def plotCloudImage(self): """Generate some additional information and plots about the cloud image, if desired.""" from pImagePlots import PImagePlots import pylab im = PImagePlots() im.setImage(self.cloudimage) im.showImage(copy=True) im.hanningFilter() im.calcAll() im.showPsd2d() im.showAcovf2d() im.showAcovf1d() im.showSf(linear=True) #pylab.show() return
# And also try to make an image with the same (final) pixel scale, but that will be created (first) # larger and then scaled down, to avoid introducing artifacts from the ACovF1d being truncated. final_imsize = 1500 # pixels desired in final image final_rad_fov = 1.75*numpy.sqrt(2) # degrees final_pixscale = 2*final_rad_fov / float(final_imsize) # Start with larger image pixscale = final_pixscale rad_fov = final_rad_fov imsize = int(2*rad_fov / pixscale) if (imsize%2 != 0): imsize = imsize + 1 xr = xsf / pixscale # xr = in pixels, over range that want to simulate print 'Image: Rad_fov', rad_fov, 'Imsize', imsize, 'Pixscale', pixscale, 'deg/pix', '(', pixscale*60.*60., 'arcsec/pix)' im = PImagePlots(shift=True, nx=imsize, ny=imsize) im.makeImageFromSf(sfx=xr, sf=SF) im.showAcovf1d() im.showPsd2dI() # Trim image to desired final size trim = round((imsize - final_imsize)/2.0) print 'Trimming about %d pixels from each side' %(trim) image = im.imageI[trim:trim+final_imsize, trim:trim+final_imsize] image = rescaleImage(image.real, sigma_goal, kappa) imsize = len(image) pixscale = pixscale rad_fov = imsize/2.0*pixscale print 'Image After Trimming: Rad_fov', rad_fov, 'Imsize', imsize, 'Pixscale', pixscale, 'deg/pix', '(', pixscale*60.*60., 'arcsec/pix)' im.setImage(image.real) imageStats(im.image) im.showImage(copy=True) im.hanningFilter() im.calcAll()
def inversion(): """Generate some example images & invert them to reconstruct the original image.""" im = TestImage(shift=True, nx=1000, ny=1000) #im.addEllipseGrid(gridX=200, gridY=100, semiX=50, semiY=25, value=1) im.addLines(width=20, spacing=200, value=1, angle=45) im.addSin(scale=300) im.hanningFilter() im.zeroPad() #cmap = pylab.cm.gray_r cmap = None clims = im.showImage(cmap=cmap) pylab.savefig('invert_image.%s' %(figformat), format='%s' %(figformat)) im.calcAll(min_npix=1, min_dr=1) # Invert from ACovF and show perfect reconstruction. im.invertAcovf2d() im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_acovf2d_good.%s' %(figformat), format='%s' %(figformat)) # Invert from ACovF 2d without phases im.invertAcovf2d(usePhasespec=False, seed=42) im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_acovf2d_nophases.%s' %(figformat), format='%s' %(figformat)) # Invert from ACovF 1d with phases im.invertAcovf1d(phasespec=im.phasespec) im.invertAcovf2d(useI=True) im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_acovf1d_phases.%s' %(figformat), format='%s' %(figformat)) # Invert from ACovF 1d without phases im.invertAcovf1d(seed=42) im.invertAcovf2d(useI=True) im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_acovf1d_nophases.%s' %(figformat), format='%s' %(figformat)) # Recalculate 1-d PSD and ACovF from this last reconstructed image (ACovF1d no phases) im2 = PImagePlots() im2.setImage(im.imageI) im2.calcAll(min_npix=1, min_dr=1) legendlabels=['Reconstructed', 'Original'] im2.showPsd1d(comparison=im, legendlabels=legendlabels) pylab.savefig('invert_recalc_ACovF_Psd1d.%s' %(figformat), format='%s' %(figformat)) im2.showAcovf1d(comparison=im, legendlabels=legendlabels) pylab.savefig('invert_recalc_ACovF_Acovf1d.%s' %(figformat), format='%s' %(figformat)) # Invert from PSD and show perfect reconstruction. im.invertPsd2d() im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_psd2d_good.%s' %(figformat), format='%s' %(figformat)) # Invert from PSD 2d without phases im.invertPsd2d(usePhasespec=False, seed=42) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_psd2d_nophases.%s' %(figformat), format='%s' %(figformat)) # Invert from PSD 1d with phases im.invertPsd1d(phasespec=im.phasespec) im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_psd1d_phases.%s' %(figformat), format='%s' %(figformat)) # Invert from PSD 1d without phases im.invertPsd1d(seed=42) im.invertPsd2d(useI=True) im.invertFft(useI=True) im.showImageI(clims=clims, cmap=cmap) pylab.savefig('invert_psd1d_nophases.%s' %(figformat), format='%s' %(figformat)) # Recalculate 1-d PSD and ACovF from this last reconstructed image (PSD1d no phases) im2 = PImagePlots() im2.setImage(im.imageI) im2.calcAll(min_npix=1, min_dr=1) im2.showPsd1d(comparison=im, legendlabels=legendlabels) pylab.savefig('invert_recalc_PSD_Psd1d.%s' %(figformat), format='%s' %(figformat)) im2.showAcovf1d(comparison=im, legendlabels=legendlabels) pylab.savefig('invert_recalc_PSD_Acovf1d.%s' %(figformat), format='%s' %(figformat)) pylab.close() return