def _from_sequence( cls, scalars: Sequence[Optional[Period]], dtype: Optional[PeriodDtype] = None, copy: bool = False, ) -> "PeriodArray": if dtype: freq = dtype.freq else: freq = None if isinstance(scalars, cls): validate_dtype_freq(scalars.dtype, freq) if copy: scalars = scalars.copy() assert isinstance(scalars, PeriodArray) # for mypy return scalars periods = np.asarray(scalars, dtype=object) if copy: periods = periods.copy() freq = freq or libperiod.extract_freq(periods) ordinals = libperiod.extract_ordinals(periods, freq) return cls(ordinals, freq=freq)
def _from_sequence(cls, scalars, dtype=None, copy=False): # type: (Sequence[Optional[Period]], PeriodDtype, bool) -> PeriodArray if dtype: freq = dtype.freq else: freq = None periods = np.asarray(scalars, dtype=object) if copy: periods = periods.copy() freq = freq or libperiod.extract_freq(periods) ordinals = libperiod.extract_ordinals(periods, freq) return cls(ordinals, freq=freq)
def _from_sequence( cls: Type["PeriodArray"], scalars: Union[Sequence[Optional[Period]], AnyArrayLike], dtype: Optional[PeriodDtype] = None, copy: bool = False, ) -> "PeriodArray": if dtype: freq = dtype.freq else: freq = None if isinstance(scalars, cls): validate_dtype_freq(scalars.dtype, freq) if copy: scalars = scalars.copy() return scalars periods = np.asarray(scalars, dtype=object) freq = freq or libperiod.extract_freq(periods) ordinals = libperiod.extract_ordinals(periods, freq) return cls(ordinals, freq=freq)
def _from_sequence( cls: type[PeriodArray], scalars: Sequence[Period | None] | AnyArrayLike, *, dtype: Dtype | None = None, copy: bool = False, ) -> PeriodArray: if dtype and isinstance(dtype, PeriodDtype): freq = dtype.freq else: freq = None if isinstance(scalars, cls): validate_dtype_freq(scalars.dtype, freq) if copy: scalars = scalars.copy() return scalars periods = np.asarray(scalars, dtype=object) freq = freq or libperiod.extract_freq(periods) ordinals = libperiod.extract_ordinals(periods, freq) return cls(ordinals, freq=freq)
def _from_sequence( cls, scalars: Sequence[Optional[Period]], dtype: PeriodDtype = None, copy: bool = False, ) -> ABCPeriodArray: if dtype: freq = dtype.freq else: freq = None if isinstance(scalars, cls): validate_dtype_freq(scalars.dtype, freq) if copy: scalars = scalars.copy() return scalars periods = np.asarray(scalars, dtype=object) if copy: periods = periods.copy() freq = freq or libperiod.extract_freq(periods) ordinals = libperiod.extract_ordinals(periods, freq) return cls(ordinals, freq=freq)
def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, copy=False, name=None, tz=None, dtype=None, **kwargs): if periods is not None: if is_float(periods): periods = int(periods) elif not is_integer(periods): msg = 'periods must be a number, got {periods}' raise TypeError(msg.format(periods=periods)) if name is None and hasattr(data, 'name'): name = data.name if dtype is not None: dtype = pandas_dtype(dtype) if not is_period_dtype(dtype): raise ValueError('dtype must be PeriodDtype') if freq is None: freq = dtype.freq elif freq != dtype.freq: msg = 'specified freq and dtype are different' raise IncompatibleFrequency(msg) # coerce freq to freq object, otherwise it can be coerced elementwise # which is slow if freq: freq = Period._maybe_convert_freq(freq) if data is None: if ordinal is not None: data = np.asarray(ordinal, dtype=np.int64) else: data, freq = cls._generate_range(start, end, periods, freq, kwargs) return cls._from_ordinals(data, name=name, freq=freq) if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: # no freq change freq = data.freq data = data._values else: base1, _ = _gfc(data.freq) base2, _ = _gfc(freq) data = period.period_asfreq_arr(data._values, base1, base2, 1) return cls._simple_new(data, name=name, freq=freq) # not array / index if not isinstance( data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)): if is_scalar(data) or isinstance(data, Period): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) data = np.asarray(data) # datetime other than period if is_datetime64_dtype(data.dtype): data = dt64arr_to_periodarr(data, freq, tz) return cls._from_ordinals(data, name=name, freq=freq) # check not floats if infer_dtype(data) == 'floating' and len(data) > 0: raise TypeError("PeriodIndex does not allow " "floating point in construction") # anything else, likely an array of strings or periods data = _ensure_object(data) freq = freq or period.extract_freq(data) data = period.extract_ordinals(data, freq) return cls._from_ordinals(data, name=name, freq=freq)
def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, copy=False, name=None, tz=None, dtype=None, **kwargs): if periods is not None: if is_float(periods): periods = int(periods) elif not is_integer(periods): msg = 'periods must be a number, got {periods}' raise TypeError(msg.format(periods=periods)) if name is None and hasattr(data, 'name'): name = data.name if dtype is not None: dtype = pandas_dtype(dtype) if not is_period_dtype(dtype): raise ValueError('dtype must be PeriodDtype') if freq is None: freq = dtype.freq elif freq != dtype.freq: msg = 'specified freq and dtype are different' raise IncompatibleFrequency(msg) # coerce freq to freq object, otherwise it can be coerced elementwise # which is slow if freq: freq = Period._maybe_convert_freq(freq) if data is None: if ordinal is not None: data = np.asarray(ordinal, dtype=np.int64) else: data, freq = cls._generate_range(start, end, periods, freq, kwargs) return cls._from_ordinals(data, name=name, freq=freq) if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: # no freq change freq = data.freq data = data._values else: base1, _ = _gfc(data.freq) base2, _ = _gfc(freq) data = period.period_asfreq_arr(data._values, base1, base2, 1) return cls._simple_new(data, name=name, freq=freq) # not array / index if not isinstance(data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)): if is_scalar(data) or isinstance(data, Period): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) data = np.asarray(data) # datetime other than period if is_datetime64_dtype(data.dtype): data = dt64arr_to_periodarr(data, freq, tz) return cls._from_ordinals(data, name=name, freq=freq) # check not floats if infer_dtype(data) == 'floating' and len(data) > 0: raise TypeError("PeriodIndex does not allow " "floating point in construction") # anything else, likely an array of strings or periods data = _ensure_object(data) freq = freq or period.extract_freq(data) data = period.extract_ordinals(data, freq) return cls._from_ordinals(data, name=name, freq=freq)
def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, tz=None, dtype=None, copy=False, name=None, **fields): valid_field_set = { 'year', 'month', 'day', 'quarter', 'hour', 'minute', 'second' } if not set(fields).issubset(valid_field_set): raise TypeError( '__new__() got an unexpected keyword argument {}'.format( list(set(fields) - valid_field_set)[0])) periods = dtl.validate_periods(periods) if name is None and hasattr(data, 'name'): name = data.name freq = dtl.validate_dtype_freq(dtype, freq) # coerce freq to freq object, otherwise it can be coerced elementwise # which is slow if freq: freq = Period._maybe_convert_freq(freq) if data is None: if ordinal is not None: data = np.asarray(ordinal, dtype=np.int64) else: data, freq = cls._generate_range(start, end, periods, freq, fields) return cls._simple_new(data, name=name, freq=freq) if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: # no freq change freq = data.freq data = data._ndarray_values else: base1, _ = _gfc(data.freq) base2, _ = _gfc(freq) data = period.period_asfreq_arr(data._ndarray_values, base1, base2, 1) return cls._simple_new(data, name=name, freq=freq) # not array / index if not isinstance( data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)): if is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) data = np.asarray(data) # datetime other than period if is_datetime64_dtype(data.dtype): data = dt64arr_to_periodarr(data, freq, tz) return cls._simple_new(data, name=name, freq=freq) # check not floats if infer_dtype(data) == 'floating' and len(data) > 0: raise TypeError("PeriodIndex does not allow " "floating point in construction") # anything else, likely an array of strings or periods data = ensure_object(data) freq = freq or period.extract_freq(data) data = period.extract_ordinals(data, freq) return cls._simple_new(data, name=name, freq=freq)
def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None, periods=None, tz=None, dtype=None, copy=False, name=None, **fields): valid_field_set = {'year', 'month', 'day', 'quarter', 'hour', 'minute', 'second'} if not set(fields).issubset(valid_field_set): raise TypeError('__new__() got an unexpected keyword argument {}'. format(list(set(fields) - valid_field_set)[0])) periods = dtl.validate_periods(periods) if name is None and hasattr(data, 'name'): name = data.name freq = dtl.validate_dtype_freq(dtype, freq) # coerce freq to freq object, otherwise it can be coerced elementwise # which is slow if freq: freq = Period._maybe_convert_freq(freq) if data is None: if ordinal is not None: data = np.asarray(ordinal, dtype=np.int64) else: data, freq = cls._generate_range(start, end, periods, freq, fields) return cls._simple_new(data, name=name, freq=freq) if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: # no freq change freq = data.freq data = data._ndarray_values else: base1, _ = _gfc(data.freq) base2, _ = _gfc(freq) data = period.period_asfreq_arr(data._ndarray_values, base1, base2, 1) return cls._simple_new(data, name=name, freq=freq) # not array / index if not isinstance(data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)): if is_scalar(data): cls._scalar_data_error(data) # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) data = np.asarray(data) # datetime other than period if is_datetime64_dtype(data.dtype): data = dt64arr_to_periodarr(data, freq, tz) return cls._simple_new(data, name=name, freq=freq) # check not floats if infer_dtype(data) == 'floating' and len(data) > 0: raise TypeError("PeriodIndex does not allow " "floating point in construction") # anything else, likely an array of strings or periods data = ensure_object(data) freq = freq or period.extract_freq(data) data = period.extract_ordinals(data, freq) return cls._simple_new(data, name=name, freq=freq)