コード例 #1
0
    def _from_sequence(
        cls,
        scalars: Sequence[Optional[Period]],
        dtype: Optional[PeriodDtype] = None,
        copy: bool = False,
    ) -> "PeriodArray":
        if dtype:
            freq = dtype.freq
        else:
            freq = None

        if isinstance(scalars, cls):
            validate_dtype_freq(scalars.dtype, freq)
            if copy:
                scalars = scalars.copy()
            assert isinstance(scalars, PeriodArray)  # for mypy
            return scalars

        periods = np.asarray(scalars, dtype=object)
        if copy:
            periods = periods.copy()

        freq = freq or libperiod.extract_freq(periods)
        ordinals = libperiod.extract_ordinals(periods, freq)
        return cls(ordinals, freq=freq)
コード例 #2
0
    def _from_sequence(cls, scalars, dtype=None, copy=False):
        # type: (Sequence[Optional[Period]], PeriodDtype, bool) -> PeriodArray
        if dtype:
            freq = dtype.freq
        else:
            freq = None
        periods = np.asarray(scalars, dtype=object)
        if copy:
            periods = periods.copy()

        freq = freq or libperiod.extract_freq(periods)
        ordinals = libperiod.extract_ordinals(periods, freq)
        return cls(ordinals, freq=freq)
コード例 #3
0
    def _from_sequence(
        cls: Type["PeriodArray"],
        scalars: Union[Sequence[Optional[Period]], AnyArrayLike],
        dtype: Optional[PeriodDtype] = None,
        copy: bool = False,
    ) -> "PeriodArray":
        if dtype:
            freq = dtype.freq
        else:
            freq = None

        if isinstance(scalars, cls):
            validate_dtype_freq(scalars.dtype, freq)
            if copy:
                scalars = scalars.copy()
            return scalars

        periods = np.asarray(scalars, dtype=object)

        freq = freq or libperiod.extract_freq(periods)
        ordinals = libperiod.extract_ordinals(periods, freq)
        return cls(ordinals, freq=freq)
コード例 #4
0
ファイル: period.py プロジェクト: Aathi410/Pro123
    def _from_sequence(
        cls: type[PeriodArray],
        scalars: Sequence[Period | None] | AnyArrayLike,
        *,
        dtype: Dtype | None = None,
        copy: bool = False,
    ) -> PeriodArray:
        if dtype and isinstance(dtype, PeriodDtype):
            freq = dtype.freq
        else:
            freq = None

        if isinstance(scalars, cls):
            validate_dtype_freq(scalars.dtype, freq)
            if copy:
                scalars = scalars.copy()
            return scalars

        periods = np.asarray(scalars, dtype=object)

        freq = freq or libperiod.extract_freq(periods)
        ordinals = libperiod.extract_ordinals(periods, freq)
        return cls(ordinals, freq=freq)
コード例 #5
0
ファイル: period.py プロジェクト: chrish42/pandas
    def _from_sequence(
            cls,
            scalars: Sequence[Optional[Period]],
            dtype: PeriodDtype = None,
            copy: bool = False,
    ) -> ABCPeriodArray:
        if dtype:
            freq = dtype.freq
        else:
            freq = None

        if isinstance(scalars, cls):
            validate_dtype_freq(scalars.dtype, freq)
            if copy:
                scalars = scalars.copy()
            return scalars

        periods = np.asarray(scalars, dtype=object)
        if copy:
            periods = periods.copy()

        freq = freq or libperiod.extract_freq(periods)
        ordinals = libperiod.extract_ordinals(periods, freq)
        return cls(ordinals, freq=freq)
コード例 #6
0
ファイル: period.py プロジェクト: nitinreddy3/pandas
    def __new__(cls,
                data=None,
                ordinal=None,
                freq=None,
                start=None,
                end=None,
                periods=None,
                copy=False,
                name=None,
                tz=None,
                dtype=None,
                **kwargs):

        if periods is not None:
            if is_float(periods):
                periods = int(periods)
            elif not is_integer(periods):
                msg = 'periods must be a number, got {periods}'
                raise TypeError(msg.format(periods=periods))

        if name is None and hasattr(data, 'name'):
            name = data.name

        if dtype is not None:
            dtype = pandas_dtype(dtype)
            if not is_period_dtype(dtype):
                raise ValueError('dtype must be PeriodDtype')
            if freq is None:
                freq = dtype.freq
            elif freq != dtype.freq:
                msg = 'specified freq and dtype are different'
                raise IncompatibleFrequency(msg)

        # coerce freq to freq object, otherwise it can be coerced elementwise
        # which is slow
        if freq:
            freq = Period._maybe_convert_freq(freq)

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods, freq,
                                                 kwargs)
            return cls._from_ordinals(data, name=name, freq=freq)

        if isinstance(data, PeriodIndex):
            if freq is None or freq == data.freq:  # no freq change
                freq = data.freq
                data = data._values
            else:
                base1, _ = _gfc(data.freq)
                base2, _ = _gfc(freq)
                data = period.period_asfreq_arr(data._values, base1, base2, 1)
            return cls._simple_new(data, name=name, freq=freq)

        # not array / index
        if not isinstance(
                data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)):
            if is_scalar(data) or isinstance(data, Period):
                cls._scalar_data_error(data)

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            data = np.asarray(data)

        # datetime other than period
        if is_datetime64_dtype(data.dtype):
            data = dt64arr_to_periodarr(data, freq, tz)
            return cls._from_ordinals(data, name=name, freq=freq)

        # check not floats
        if infer_dtype(data) == 'floating' and len(data) > 0:
            raise TypeError("PeriodIndex does not allow "
                            "floating point in construction")

        # anything else, likely an array of strings or periods
        data = _ensure_object(data)
        freq = freq or period.extract_freq(data)
        data = period.extract_ordinals(data, freq)
        return cls._from_ordinals(data, name=name, freq=freq)
コード例 #7
0
ファイル: period.py プロジェクト: cpcloud/pandas
    def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None,
                periods=None, copy=False, name=None, tz=None, dtype=None,
                **kwargs):

        if periods is not None:
            if is_float(periods):
                periods = int(periods)
            elif not is_integer(periods):
                msg = 'periods must be a number, got {periods}'
                raise TypeError(msg.format(periods=periods))

        if name is None and hasattr(data, 'name'):
            name = data.name

        if dtype is not None:
            dtype = pandas_dtype(dtype)
            if not is_period_dtype(dtype):
                raise ValueError('dtype must be PeriodDtype')
            if freq is None:
                freq = dtype.freq
            elif freq != dtype.freq:
                msg = 'specified freq and dtype are different'
                raise IncompatibleFrequency(msg)

        # coerce freq to freq object, otherwise it can be coerced elementwise
        # which is slow
        if freq:
            freq = Period._maybe_convert_freq(freq)

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods,
                                                 freq, kwargs)
            return cls._from_ordinals(data, name=name, freq=freq)

        if isinstance(data, PeriodIndex):
            if freq is None or freq == data.freq:  # no freq change
                freq = data.freq
                data = data._values
            else:
                base1, _ = _gfc(data.freq)
                base2, _ = _gfc(freq)
                data = period.period_asfreq_arr(data._values,
                                                base1, base2, 1)
            return cls._simple_new(data, name=name, freq=freq)

        # not array / index
        if not isinstance(data, (np.ndarray, PeriodIndex,
                                 DatetimeIndex, Int64Index)):
            if is_scalar(data) or isinstance(data, Period):
                cls._scalar_data_error(data)

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            data = np.asarray(data)

        # datetime other than period
        if is_datetime64_dtype(data.dtype):
            data = dt64arr_to_periodarr(data, freq, tz)
            return cls._from_ordinals(data, name=name, freq=freq)

        # check not floats
        if infer_dtype(data) == 'floating' and len(data) > 0:
            raise TypeError("PeriodIndex does not allow "
                            "floating point in construction")

        # anything else, likely an array of strings or periods
        data = _ensure_object(data)
        freq = freq or period.extract_freq(data)
        data = period.extract_ordinals(data, freq)
        return cls._from_ordinals(data, name=name, freq=freq)
コード例 #8
0
ファイル: period.py プロジェクト: tawsifh/pandas
    def __new__(cls,
                data=None,
                ordinal=None,
                freq=None,
                start=None,
                end=None,
                periods=None,
                tz=None,
                dtype=None,
                copy=False,
                name=None,
                **fields):

        valid_field_set = {
            'year', 'month', 'day', 'quarter', 'hour', 'minute', 'second'
        }

        if not set(fields).issubset(valid_field_set):
            raise TypeError(
                '__new__() got an unexpected keyword argument {}'.format(
                    list(set(fields) - valid_field_set)[0]))

        periods = dtl.validate_periods(periods)

        if name is None and hasattr(data, 'name'):
            name = data.name

        freq = dtl.validate_dtype_freq(dtype, freq)

        # coerce freq to freq object, otherwise it can be coerced elementwise
        # which is slow
        if freq:
            freq = Period._maybe_convert_freq(freq)

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods, freq,
                                                 fields)
            return cls._simple_new(data, name=name, freq=freq)

        if isinstance(data, PeriodIndex):
            if freq is None or freq == data.freq:  # no freq change
                freq = data.freq
                data = data._ndarray_values
            else:
                base1, _ = _gfc(data.freq)
                base2, _ = _gfc(freq)
                data = period.period_asfreq_arr(data._ndarray_values, base1,
                                                base2, 1)
            return cls._simple_new(data, name=name, freq=freq)

        # not array / index
        if not isinstance(
                data, (np.ndarray, PeriodIndex, DatetimeIndex, Int64Index)):
            if is_scalar(data):
                cls._scalar_data_error(data)

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            data = np.asarray(data)

        # datetime other than period
        if is_datetime64_dtype(data.dtype):
            data = dt64arr_to_periodarr(data, freq, tz)
            return cls._simple_new(data, name=name, freq=freq)

        # check not floats
        if infer_dtype(data) == 'floating' and len(data) > 0:
            raise TypeError("PeriodIndex does not allow "
                            "floating point in construction")

        # anything else, likely an array of strings or periods
        data = ensure_object(data)
        freq = freq or period.extract_freq(data)
        data = period.extract_ordinals(data, freq)
        return cls._simple_new(data, name=name, freq=freq)
コード例 #9
0
ファイル: period.py プロジェクト: sechilds/pandas
    def __new__(cls, data=None, ordinal=None, freq=None, start=None, end=None,
                periods=None, tz=None, dtype=None, copy=False, name=None,
                **fields):

        valid_field_set = {'year', 'month', 'day', 'quarter',
                           'hour', 'minute', 'second'}

        if not set(fields).issubset(valid_field_set):
            raise TypeError('__new__() got an unexpected keyword argument {}'.
                            format(list(set(fields) - valid_field_set)[0]))

        periods = dtl.validate_periods(periods)

        if name is None and hasattr(data, 'name'):
            name = data.name

        freq = dtl.validate_dtype_freq(dtype, freq)

        # coerce freq to freq object, otherwise it can be coerced elementwise
        # which is slow
        if freq:
            freq = Period._maybe_convert_freq(freq)

        if data is None:
            if ordinal is not None:
                data = np.asarray(ordinal, dtype=np.int64)
            else:
                data, freq = cls._generate_range(start, end, periods,
                                                 freq, fields)
            return cls._simple_new(data, name=name, freq=freq)

        if isinstance(data, PeriodIndex):
            if freq is None or freq == data.freq:  # no freq change
                freq = data.freq
                data = data._ndarray_values
            else:
                base1, _ = _gfc(data.freq)
                base2, _ = _gfc(freq)
                data = period.period_asfreq_arr(data._ndarray_values,
                                                base1, base2, 1)
            return cls._simple_new(data, name=name, freq=freq)

        # not array / index
        if not isinstance(data, (np.ndarray, PeriodIndex,
                                 DatetimeIndex, Int64Index)):
            if is_scalar(data):
                cls._scalar_data_error(data)

            # other iterable of some kind
            if not isinstance(data, (list, tuple)):
                data = list(data)

            data = np.asarray(data)

        # datetime other than period
        if is_datetime64_dtype(data.dtype):
            data = dt64arr_to_periodarr(data, freq, tz)
            return cls._simple_new(data, name=name, freq=freq)

        # check not floats
        if infer_dtype(data) == 'floating' and len(data) > 0:
            raise TypeError("PeriodIndex does not allow "
                            "floating point in construction")

        # anything else, likely an array of strings or periods
        data = ensure_object(data)
        freq = freq or period.extract_freq(data)
        data = period.extract_ordinals(data, freq)
        return cls._simple_new(data, name=name, freq=freq)