def __init__(self): self.__layer = [] self.__input_symbol = Variable(name='InputSymbol') self.__current_symbol = self.__input_symbol self.__current_output = None self.__current_weight = None self.__current_bias = None self.__variables = [] self.__data = None self.__optimizer = None self.__loss = None self.__train_engine = Engine() self.__predict_engine = Engine()
def end_iteration(self): for layer_tuple in self.__batch_normalization_layer: layer_mean_symbol, layer_variance_symbol = layer_tuple[0].normalization_symbol() normalization_engine = Engine(layer_variance_symbol) normalization_engine.bind = self.network.engine.bind layer_tuple[2].append(normalization_engine.value()) layer_tuple[1].append(normalization_engine.value_cache[layer_mean_symbol])
def __init__(self, symbol: Symbol = None, variables=None): self.__engine: Engine = None self.__variables = [] self.__value_cache = {} self.__gradient_cache = {} self.__gradient_engines = {} self.__symbol_dependence_variables = {} self.set_engine(Engine(symbol, variables))
def __init__(self): self.epoch = None self.iteration = None self.epochs = None self.batch_size = None self.engine = Engine() self.__layer = [] self.__input_symbol = Variable(name='InputSymbol') self.__current_symbol = self.__input_symbol self.__current_output = None self.__current_weight = None self.__current_bias = None self.__variables = [] self.__data = None self.__optimizer = None self.__loss = None self.__predict_engine = Engine() self.__plugin = collections.OrderedDict() self.load_default_plugin()
def __init__(self, rate: float, decay: float, square_decay: float, consistent: bool = False): self.__rate = rate self.__decay = decay self.__square_decay = square_decay self.__consistent = consistent self.__gradient_engine = Engine() self.__estimation_map = {} self.__square_estimation_map = {} self.__step = 1
def __init__(self, rate: float, consistent: bool = False): self.__rate = rate self.__consistent = consistent self.__gradient_engine = Engine() self.__accumulate_gradient_map = {}
def __init__(self, rate: float, factor: float, consistent: bool = False): self.__rate = rate self.__factor = factor self.__consistent = consistent self.__old_gradient_map = {} self.__gradient_engine = Engine()
def __init__(self, rate: float, consistent: bool = False): self.__rate = rate self.__consistent = consistent self.__gradient_engine = Engine() self.__mean_map = {} self.__step = 1
def __init__(self, decay: float, consistent: bool = False): self.__decay = decay self.__consistent = consistent self.__gradient_engine = Engine() self.__accumulate_gradient_map = {} self.__expectation_map = {}
def maximize(self, engine: Engine): engine.differentiate() variables = engine.variables for variable in variables: variable.value += self.__rate * Engine( engine.gradient(variable)).value()
def __init__(self, rate: float): self.__rate = rate self.__gradient_engine = Engine()
def initialization(self): for symbol in self.__variables: gradient_symbol = self.__engine.gradient(symbol) self.__gradient_engines[symbol] = Engine(gradient_symbol) self.__symbol_dependence_variables[ symbol] = gradient_symbol.dependenc(SymbolCategory.variable)