Example #1
0
 def optimize(self, engine: Engine, calculate_function):
     variables = engine.variables
     for variable in variables:
         value_cache = self.__gradient_engine.value_cache
         self.__gradient_engine.symbol = engine.gradient(variable)
         self.__gradient_engine.bind = engine.bind
         if self.__consistent:
             self.__gradient_engine.value_cache = value_cache
         current_gradient = self.__gradient_engine.value()
         self.__estimation_map.setdefault(variable, 0)
         self.__square_estimation_map.setdefault(variable, 0)
         self.__estimation_map[
             variable] = self.__decay * self.__estimation_map[variable] + (
                 1 - self.__decay) * current_gradient
         self.__square_estimation_map[
             variable] = self.__square_decay * self.__square_estimation_map[
                 variable] + (1 - self.__square_decay) * current_gradient**2
         estimation = self.__estimation_map[variable] / (
             1 - self.__decay**self.__step)
         square_estimation = self.__square_estimation_map[variable] / (
             1 - self.__square_decay**self.__step)
         self.__step += 1
         regularization_value = estimation / (square_estimation + 1e-8)**0.5
         variable.value = calculate_function(
             variable.value, self.__rate * regularization_value)
     engine.modified()
     self.__gradient_engine.modified()
Example #2
0
 def maximize(self, engine: Engine):
     engine.differentiate()
     variables = engine.variables
     for variable in variables:
         self.__gradient_engine.symbol(engine.gradient(variable))
         self.__gradient_engine.bind = engine.bind
         variable.value += self.__rate * self.__gradient_engine.value()
         engine.modified()
Example #3
0
 def optimize(self, engine: Engine, calculate_function):
     variables = engine.variables
     for variable in variables:
         value_cache = self.__gradient_engine.value_cache
         self.__gradient_engine.symbol = engine.gradient(variable)
         self.__gradient_engine.bind = engine.bind
         if self.__consistent:
             self.__gradient_engine.value_cache = value_cache
         variable.value = calculate_function(variable.value, self.__rate * self.__gradient_engine.value())
     engine.modified()
     self.__gradient_engine.modified()
Example #4
0
 def optimize(self, engine: Engine, calculate_function):
     variables = engine.variables
     for variable in variables:
         value_cache = self.__gradient_engine.value_cache
         self.__gradient_engine.symbol = engine.gradient(variable)
         self.__gradient_engine.bind = engine.bind
         if self.__consistent:
             self.__gradient_engine.value_cache = value_cache
         momentum = self.__gradient_engine.value(
         ) + self.__factor * self.__old_gradient_map.get(variable, 0)
         self.__old_gradient_map[variable] = momentum
         variable.value = calculate_function(variable.value,
                                             self.__rate * momentum)
     engine.modified()
     self.__gradient_engine.modified()
Example #5
0
 def optimize(self, engine: Engine, calculate_function):
     variables = engine.variables
     for variable in variables:
         value_cache = self.__gradient_engine.value_cache
         self.__gradient_engine.symbol = engine.gradient(variable)
         self.__gradient_engine.bind = engine.bind
         if self.__consistent:
             self.__gradient_engine.value_cache = value_cache
         current_gradient = self.__gradient_engine.value()
         self.__accumulate_gradient_map.setdefault(variable, 0)
         self.__accumulate_gradient_map[variable] += current_gradient**2
         regularization_value = current_gradient / (
             self.__accumulate_gradient_map[variable] + 1e-8)**0.5
         variable.value = calculate_function(
             variable.value, self.__rate * regularization_value)
     engine.modified()
     self.__gradient_engine.modified()
Example #6
0
 def optimize(self, engine: Engine, calculate_function):
     variables = engine.variables
     for variable in variables:
         value_cache = self.__gradient_engine.value_cache
         self.__gradient_engine.symbol = engine.gradient(variable)
         self.__gradient_engine.bind = engine.bind
         if self.__consistent:
             self.__gradient_engine.value_cache = value_cache
         current_gradient = self.__gradient_engine.value()
         self.__accumulate_gradient_map.setdefault(variable, 0)
         self.__expectation_map.setdefault(variable, 0)
         self.__accumulate_gradient_map[
             variable] = self.__decay * self.__accumulate_gradient_map[
                 variable] + (1 - self.__decay) * current_gradient**2
         delta = (self.__expectation_map[variable] +
                  1e-8)**0.5 / (self.__accumulate_gradient_map[variable] +
                                1e-8)**0.5 * current_gradient
         self.__expectation_map[
             variable] = self.__decay * self.__expectation_map[variable] + (
                 1 - self.__decay) * delta**2
         variable.value = calculate_function(variable.value, delta)
     engine.modified()
     self.__gradient_engine.modified()
Example #7
0
 def maximize(self, engine: Engine):
     engine.differentiate()
     variables = engine.variables
     for variable in variables:
         variable.value += self.__rate * Engine(
             engine.gradient(variable)).value()