def sample_from_randwalk(this, i, x, p_i): """ @params: this, a Dpmp object @params: i, integer, the index of the node or part @params: x, (D,N) array of particles, where D is the particle dimension and N the number of particles @params: p_i, integer, the index of the particle we take the random walk from """ if this.use_map_particle_for_rnd_walk: p = this.mapParticleInd[i] else: p = p_i p_value = 0.5 if npr.rand() > p_value: movedType = MT_RND_ALL sigma = particles.get_noise_std(this, i, x[:, p]) proposedParticle = npr.normal(x[:, p], sigma) # Generate a random Rodrigues vector r = npr.normal( np.zeros(3), np.array([ this.particle_rSigma, this.particle_rSigma, this.particle_rSigma ])) R, _ = cv2.Rodrigues(r) Rx, _ = cv2.Rodrigues(x[0:3, p]) Rt = np.matrix(R) * np.matrix(Rx) rt, _ = cv2.Rodrigues(Rt) proposedParticle[0:3] = rt[:, 0] else: movedType = MT_RND_Z_POSE # Instead of a random walk from the current value for all parameters, resample only the pose-dependent deformations coefficients # from the whole distribution proposedParticle = x[:, p].copy() nB = this.nB[i] zp = npr.normal(np.zeros(nB), this.body.posePCA[i]['sigma'][0:nB]) proposedParticle = particles.set_pose_def_params( this.particleIdx[i], proposedParticle, zp) return proposedParticle, movedType
def sample_from_randwalk(this, i, x, p_i): """ @params: this, a Dpmp object @params: i, integer, the index of the node or part @params: x, (D,N) array of particles, where D is the particle dimension and N the number of particles @params: p_i, integer, the index of the particle we take the random walk from """ if this.use_map_particle_for_rnd_walk: p = this.mapParticleInd[i] else: p = p_i p_value = 0.5 if npr.rand() > p_value: movedType = MT_RND_ALL sigma = particles.get_noise_std(this, i, x[:,p]) proposedParticle = npr.normal(x[:,p], sigma) # Generate a random Rodrigues vector r = npr.normal(np.zeros(3), np.array([this.particle_rSigma, this.particle_rSigma, this.particle_rSigma])) R, _ = cv2.Rodrigues(r) Rx, _ = cv2.Rodrigues(x[0:3,p]) Rt = np.matrix(R)*np.matrix(Rx) rt, _ = cv2.Rodrigues(Rt) proposedParticle[0:3] = rt[:,0] else: movedType = MT_RND_Z_POSE # Instead of a random walk from the current value for all parameters, resample only the pose-dependent deformations coefficients # from the whole distribution proposedParticle = x[:, p].copy() nB = this.nB[i] zp = npr.normal(np.zeros(nB), this.body.posePCA[i]['sigma'][0:nB]) proposedParticle = particles.set_pose_def_params(this.particleIdx[i], proposedParticle, zp) return proposedParticle, movedType
def sample_from_nbr(this, i, x, p_i): """ Sample a new particle by looking at the neighbors. We first pick a neighbor, and then generate a particle from the model. """ #pa = this.body.parent[i] #ch = this.body.child[i] r_min = this.body.rmin r_max = this.body.rmax ks = np.where(this.A[:,i] >=0)[0] nNbrs = len(ks) assert nNbrs > 0 num_x = x.shape[1] x_per_nbr = np.max([1, int(num_x / nNbrs)]) A = xrange(x_per_nbr,num_x+1,x_per_nbr) try: I_nbr = np.min(np.where(p_i<=np.array(A))[0]) except: I_nbr = 0 k = ks[I_nbr] # Select the neighbor particle at random num_x = this.b[k]['x'].shape[1] I_k = np.random.randint(0,num_x,1)[0] x_k = this.b[k]['x'][:,I_k] a = k b = i proposedParticle = np.zeros(this.nodeDim[b]) za = particles.get_pose_def_params(this.particleIdx[a], x_k) na = len(za) mu = this.body.poseDefModelA2B[a][b]['mu'] C = this.body.poseDefModelA2B[a][b]['C'] # Indexes of the conditioning variables if npr.rand()>0.5 or k != this.body.parent[b]: cInd = xrange(0,na) X = za movedType = MT_NBR_Z_PARENT_COND else: l = np.prod(mu.shape) cInd = np.concatenate((xrange(0,na), xrange(l-3,l))) if k == this.body.parent[b]: alpha = npr.rand(3) r_rel = r_min[b,:] + alpha * (r_max[b,:] - r_min[b,:]) X = np.concatenate((za, r_rel)) movedType = MT_NBR_Z_PARENT_AND_ANGLE_COND nb = this.nB[b] # Indexes of the resulting variables rInd = xrange(this.body.nPoseBasis[a], this.body.nPoseBasis[a]+nb) mu_ab, C_ab = ba.compute_conditioned_gaussian(this.body, rInd, cInd, mu, C, np.expand_dims(X, axis=1)) proposedParticle = particles.set_pose_def_params(this.particleIdx[b], proposedParticle, mu_ab) # For the shape parameters, we propagate the same shape zs = particles.get_shape_params(this.particleIdx[a], x_k) proposedParticle = particles.set_shape_params(this.particleIdx[b], proposedParticle, zs) # Get the neighbor points in world frame Paw = particles.particle_to_points(this, x_k, a) # Get the points of the proposed particle Pb = ba.get_part_mesh(this.body, b, mu_ab, zs) # Compute the alignment R, T, cost = ba.align_to_parent(this.body, b, a, Pb, Paw, None) # Add some noise to the spring if this.springSigma != 0: T = npr.normal(T, this.springSigma) r, _ = cv2.Rodrigues(R) proposedParticle = particles.set_pose_params(this.particleIdx[b], proposedParticle, r, T) return proposedParticle, movedType
def sample_from_nbr(this, i, x, p_i): """ Sample a new particle by looking at the neighbors. We first pick a neighbor, and then generate a particle from the model. """ #pa = this.body.parent[i] #ch = this.body.child[i] r_min = this.body.rmin r_max = this.body.rmax ks = np.where(this.A[:, i] >= 0)[0] nNbrs = len(ks) assert nNbrs > 0 num_x = x.shape[1] x_per_nbr = np.max([1, int(num_x / nNbrs)]) A = xrange(x_per_nbr, num_x + 1, x_per_nbr) try: I_nbr = np.min(np.where(p_i <= np.array(A))[0]) except: I_nbr = 0 k = ks[I_nbr] # Select the neighbor particle at random num_x = this.b[k]['x'].shape[1] I_k = np.random.randint(0, num_x, 1)[0] x_k = this.b[k]['x'][:, I_k] a = k b = i proposedParticle = np.zeros(this.nodeDim[b]) za = particles.get_pose_def_params(this.particleIdx[a], x_k) na = len(za) mu = this.body.poseDefModelA2B[a][b]['mu'] C = this.body.poseDefModelA2B[a][b]['C'] # Indexes of the conditioning variables if npr.rand() > 0.5 or k != this.body.parent[b]: cInd = xrange(0, na) X = za movedType = MT_NBR_Z_PARENT_COND else: l = np.prod(mu.shape) cInd = np.concatenate((xrange(0, na), xrange(l - 3, l))) if k == this.body.parent[b]: alpha = npr.rand(3) r_rel = r_min[b, :] + alpha * (r_max[b, :] - r_min[b, :]) X = np.concatenate((za, r_rel)) movedType = MT_NBR_Z_PARENT_AND_ANGLE_COND nb = this.nB[b] # Indexes of the resulting variables rInd = xrange(this.body.nPoseBasis[a], this.body.nPoseBasis[a] + nb) mu_ab, C_ab = ba.compute_conditioned_gaussian(this.body, rInd, cInd, mu, C, np.expand_dims(X, axis=1)) proposedParticle = particles.set_pose_def_params(this.particleIdx[b], proposedParticle, mu_ab) # For the shape parameters, we propagate the same shape zs = particles.get_shape_params(this.particleIdx[a], x_k) proposedParticle = particles.set_shape_params(this.particleIdx[b], proposedParticle, zs) # Get the neighbor points in world frame Paw = particles.particle_to_points(this, x_k, a) # Get the points of the proposed particle Pb = ba.get_part_mesh(this.body, b, mu_ab, zs) # Compute the alignment R, T, cost = ba.align_to_parent(this.body, b, a, Pb, Paw, None) # Add some noise to the spring if this.springSigma != 0: T = npr.normal(T, this.springSigma) r, _ = cv2.Rodrigues(R) proposedParticle = particles.set_pose_params(this.particleIdx[b], proposedParticle, r, T) return proposedParticle, movedType