示例#1
0
def sample_from_randwalk(this, i, x, p_i):
    """
    @params: this, a Dpmp object
    @params: i, integer, the index of the node or part
    @params: x, (D,N) array of particles, where D is the particle dimension and N the number of particles
    @params: p_i, integer, the index of the particle we take the random walk from
    """

    if this.use_map_particle_for_rnd_walk:
        p = this.mapParticleInd[i]
    else:
        p = p_i
    p_value = 0.5

    if npr.rand() > p_value:
        movedType = MT_RND_ALL
        sigma = particles.get_noise_std(this, i, x[:, p])
        proposedParticle = npr.normal(x[:, p], sigma)

        # Generate a random Rodrigues vector
        r = npr.normal(
            np.zeros(3),
            np.array([
                this.particle_rSigma, this.particle_rSigma,
                this.particle_rSigma
            ]))
        R, _ = cv2.Rodrigues(r)
        Rx, _ = cv2.Rodrigues(x[0:3, p])
        Rt = np.matrix(R) * np.matrix(Rx)
        rt, _ = cv2.Rodrigues(Rt)
        proposedParticle[0:3] = rt[:, 0]

    else:
        movedType = MT_RND_Z_POSE
        # Instead of a random walk from the current value for all parameters, resample only the pose-dependent deformations coefficients
        # from the whole distribution
        proposedParticle = x[:, p].copy()
        nB = this.nB[i]
        zp = npr.normal(np.zeros(nB), this.body.posePCA[i]['sigma'][0:nB])
        proposedParticle = particles.set_pose_def_params(
            this.particleIdx[i], proposedParticle, zp)

    return proposedParticle, movedType
示例#2
0
def sample_from_randwalk(this, i, x, p_i):
    """
    @params: this, a Dpmp object
    @params: i, integer, the index of the node or part
    @params: x, (D,N) array of particles, where D is the particle dimension and N the number of particles
    @params: p_i, integer, the index of the particle we take the random walk from
    """

    if this.use_map_particle_for_rnd_walk:
        p = this.mapParticleInd[i]
    else:
        p = p_i
    p_value = 0.5
    
    if npr.rand() > p_value:
        movedType = MT_RND_ALL
        sigma = particles.get_noise_std(this, i, x[:,p])
        proposedParticle = npr.normal(x[:,p], sigma)

        # Generate a random Rodrigues vector
        r = npr.normal(np.zeros(3), np.array([this.particle_rSigma, this.particle_rSigma, this.particle_rSigma]))
        R, _ = cv2.Rodrigues(r)
        Rx, _ = cv2.Rodrigues(x[0:3,p])
        Rt = np.matrix(R)*np.matrix(Rx)
        rt, _ = cv2.Rodrigues(Rt)
        proposedParticle[0:3] = rt[:,0]

    else:
        movedType = MT_RND_Z_POSE
        # Instead of a random walk from the current value for all parameters, resample only the pose-dependent deformations coefficients
        # from the whole distribution
        proposedParticle = x[:, p].copy()
        nB = this.nB[i]
        zp = npr.normal(np.zeros(nB), this.body.posePCA[i]['sigma'][0:nB])
        proposedParticle = particles.set_pose_def_params(this.particleIdx[i], proposedParticle, zp)


    return proposedParticle, movedType
示例#3
0
def sample_from_nbr(this, i, x, p_i):
    """
    Sample a new particle by looking at the neighbors. We first pick a neighbor, and then generate a particle from the model.
    """
     
    #pa = this.body.parent[i]
    #ch = this.body.child[i]
 
    r_min = this.body.rmin
    r_max = this.body.rmax

    ks = np.where(this.A[:,i] >=0)[0]

    nNbrs = len(ks)
    assert nNbrs > 0

    num_x = x.shape[1] 
    x_per_nbr = np.max([1, int(num_x / nNbrs)])
    
    A = xrange(x_per_nbr,num_x+1,x_per_nbr)
    try:
        I_nbr = np.min(np.where(p_i<=np.array(A))[0])
    except:
        I_nbr = 0
    k = ks[I_nbr]

    # Select the neighbor particle at random
    num_x = this.b[k]['x'].shape[1]
    I_k = np.random.randint(0,num_x,1)[0]
    x_k = this.b[k]['x'][:,I_k]

    a = k
    b = i
    proposedParticle = np.zeros(this.nodeDim[b])

    za = particles.get_pose_def_params(this.particleIdx[a], x_k)
    na = len(za)
    mu = this.body.poseDefModelA2B[a][b]['mu']
    C = this.body.poseDefModelA2B[a][b]['C']

    # Indexes of the conditioning variables
    if npr.rand()>0.5 or k != this.body.parent[b]: 
        cInd = xrange(0,na)
        X = za
        movedType = MT_NBR_Z_PARENT_COND
    else:
        l = np.prod(mu.shape)
        cInd = np.concatenate((xrange(0,na), xrange(l-3,l)))
        if k == this.body.parent[b]:
            alpha = npr.rand(3)
            r_rel = r_min[b,:] + alpha * (r_max[b,:] - r_min[b,:])
            X = np.concatenate((za, r_rel))
            movedType = MT_NBR_Z_PARENT_AND_ANGLE_COND

    nb = this.nB[b] 
    # Indexes of the resulting variables
    rInd = xrange(this.body.nPoseBasis[a], this.body.nPoseBasis[a]+nb)

    mu_ab, C_ab = ba.compute_conditioned_gaussian(this.body, rInd, cInd, mu, C, np.expand_dims(X, axis=1))
    proposedParticle = particles.set_pose_def_params(this.particleIdx[b], proposedParticle, mu_ab)

    # For the shape parameters, we propagate the same shape
    zs = particles.get_shape_params(this.particleIdx[a], x_k)
    proposedParticle = particles.set_shape_params(this.particleIdx[b], proposedParticle, zs)

    # Get the neighbor points in world frame
    Paw = particles.particle_to_points(this, x_k, a)

    # Get the points of the proposed particle
    Pb = ba.get_part_mesh(this.body, b, mu_ab, zs)

    # Compute the alignment
    R, T, cost = ba.align_to_parent(this.body, b, a, Pb, Paw, None)	

    # Add some noise to the spring
    if this.springSigma != 0:
        T = npr.normal(T, this.springSigma)

    r, _ = cv2.Rodrigues(R)
    proposedParticle = particles.set_pose_params(this.particleIdx[b], proposedParticle, r, T)

    return proposedParticle, movedType
示例#4
0
def sample_from_nbr(this, i, x, p_i):
    """
    Sample a new particle by looking at the neighbors. We first pick a neighbor, and then generate a particle from the model.
    """

    #pa = this.body.parent[i]
    #ch = this.body.child[i]

    r_min = this.body.rmin
    r_max = this.body.rmax

    ks = np.where(this.A[:, i] >= 0)[0]

    nNbrs = len(ks)
    assert nNbrs > 0

    num_x = x.shape[1]
    x_per_nbr = np.max([1, int(num_x / nNbrs)])

    A = xrange(x_per_nbr, num_x + 1, x_per_nbr)
    try:
        I_nbr = np.min(np.where(p_i <= np.array(A))[0])
    except:
        I_nbr = 0
    k = ks[I_nbr]

    # Select the neighbor particle at random
    num_x = this.b[k]['x'].shape[1]
    I_k = np.random.randint(0, num_x, 1)[0]
    x_k = this.b[k]['x'][:, I_k]

    a = k
    b = i
    proposedParticle = np.zeros(this.nodeDim[b])

    za = particles.get_pose_def_params(this.particleIdx[a], x_k)
    na = len(za)
    mu = this.body.poseDefModelA2B[a][b]['mu']
    C = this.body.poseDefModelA2B[a][b]['C']

    # Indexes of the conditioning variables
    if npr.rand() > 0.5 or k != this.body.parent[b]:
        cInd = xrange(0, na)
        X = za
        movedType = MT_NBR_Z_PARENT_COND
    else:
        l = np.prod(mu.shape)
        cInd = np.concatenate((xrange(0, na), xrange(l - 3, l)))
        if k == this.body.parent[b]:
            alpha = npr.rand(3)
            r_rel = r_min[b, :] + alpha * (r_max[b, :] - r_min[b, :])
            X = np.concatenate((za, r_rel))
            movedType = MT_NBR_Z_PARENT_AND_ANGLE_COND

    nb = this.nB[b]
    # Indexes of the resulting variables
    rInd = xrange(this.body.nPoseBasis[a], this.body.nPoseBasis[a] + nb)

    mu_ab, C_ab = ba.compute_conditioned_gaussian(this.body, rInd, cInd, mu, C,
                                                  np.expand_dims(X, axis=1))
    proposedParticle = particles.set_pose_def_params(this.particleIdx[b],
                                                     proposedParticle, mu_ab)

    # For the shape parameters, we propagate the same shape
    zs = particles.get_shape_params(this.particleIdx[a], x_k)
    proposedParticle = particles.set_shape_params(this.particleIdx[b],
                                                  proposedParticle, zs)

    # Get the neighbor points in world frame
    Paw = particles.particle_to_points(this, x_k, a)

    # Get the points of the proposed particle
    Pb = ba.get_part_mesh(this.body, b, mu_ab, zs)

    # Compute the alignment
    R, T, cost = ba.align_to_parent(this.body, b, a, Pb, Paw, None)

    # Add some noise to the spring
    if this.springSigma != 0:
        T = npr.normal(T, this.springSigma)

    r, _ = cv2.Rodrigues(R)
    proposedParticle = particles.set_pose_params(this.particleIdx[b],
                                                 proposedParticle, r, T)

    return proposedParticle, movedType