Example #1
0
def build_model(weights=None,
                embedding_size=256,
                recurrent_gate_size=512,
                n_features=5,
                dropout=0.4):
    """
    build_model

    Inputs:
        weights - Path to a weights file to load, or None if the model should be built from scratch
        embedding_size - Size of the embedding layer
        recurrent_gate_size - Size of the gated recurrent layer
        n_features - Number of features for the embedding layer
        dropout - Dropout value

    Returns:
        A model object ready for training (or evaluation if a previous model was loaded via `weights`)
    """
    # vvvvv
    #Modify this if you want to change the structure of the network!
    # ^^^^^
    model_layers = [
        Embedding(size=embedding_size, n_features=n_features),
        GatedRecurrent(size=recurrent_gate_size, p_drop=dropout),
        Dense(size=1, activation='sigmoid', p_drop=dropout)
    ]
    model = RNN(layers=model_layers,
                cost='BinaryCrossEntropy',
                verbose=2,
                updater='Adam')
    if weights:  #Just load the provided model instead, I guess?
        model = load(weights)
    return model
Example #2
0
def rnn(train_text, train_label):
    tokenizer = Tokenizer()
    train_tokens = tokenizer.fit_transform(train_text)
    layers = [
        Embedding(size=50, n_features=tokenizer.n_features),
        GatedRecurrent(size=128),
        Dense(size=1, activation='sigmoid')
    ]
    #    print "train_tokens=", train_tokens
    model = RNN(layers=layers, cost='BinaryCrossEntropy')
    model.fit(train_tokens, train_label)
    return model
Example #3
0
def main(ptrain, ntrain, ptest, ntest, out, modeltype):
    assert modeltype in ["gated_recurrent", "lstm_recurrent"]

    print("Using the %s model ..." % modeltype)
    print("Loading data ...")
    trX, trY = load_data(ptrain, ntrain)
    teX, teY = load_data(ptest, ntest)

    tokenizer = Tokenizer(min_df=10, max_features=100000)
    trX = tokenizer.fit_transform(trX)
    teX = tokenizer.transform(teX)

    print("Training ...")
    if modeltype == "gated_recurrent":
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            GatedRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid',
                           init='orthogonal', seq_output=False, p_drop=0.75),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]
    else:
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            LstmRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid',
                          init='orthogonal', seq_output=False, p_drop=0.75),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]

    model = RNN(layers=layers, cost='bce', updater=Adadelta(lr=0.5))
    model.fit(trX, trY, n_epochs=10)

    # Predicting the probabilities of positive labels
    print("Predicting ...")
    pr_teX = model.predict(teX).flatten()

    predY = np.ones(len(teY))
    predY[pr_teX < 0.5] = -1

    with open(out, "w") as f:
        for lab, pos_pr, neg_pr in zip(predY, pr_teX, 1 - pr_teX):
            f.write("%d %f %f\n" % (lab, pos_pr, neg_pr))
Example #4
0
def train_RNN(tokenizer, tokens, labels):
	"""
	INPUT: Trained tokenizer class, label array
		- The arrays of the tokenized critic reviews and the corresponding labels
	Returns a trained Recurrent Neural Network class object
	"""
	layers = [
		Embedding(size=256, n_features=tokenizer.n_features),
		GatedRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid', init='orthogonal', seq_output=False, p_drop=0.75),
		Dense(size=1, activation='sigmoid', init='orthogonal')
	]

	model = RNN(layers=layers, cost='bce', updater=Adadelta(lr=0.5))

	path_snapshots = 'model_snapshots'

	print "Begin fitting RNN"

	model.fit(tokens, labels, n_epochs=12)

	return model
Example #5
0
from passage.models import RNN
from passage.updates import NAG, Regularizer
from passage.layers import Generic, GatedRecurrent, Dense
from passage.utils import load, save

from load import load_mnist

trX, teX, trY, teY = load_mnist()

#Use generic layer - RNN processes a size 28 vector at a time scanning from left to right 
layers = [
	Generic(size=28),
	GatedRecurrent(size=512, p_drop=0.2),
	Dense(size=10, activation='softmax', p_drop=0.5)
]

#A bit of l2 helps with generalization, higher momentum helps convergence
updater = NAG(momentum=0.95, regularizer=Regularizer(l2=1e-4))

#Linear iterator for real valued data, cce cost for softmax
model = RNN(layers=layers, updater=updater, iterator='linear', cost='cce')
model.fit(trX, trY, n_epochs=20)

tr_preds = model.predict(trX[:len(teY)])
te_preds = model.predict(teX)

tr_acc = np.mean(trY[:len(teY)] == np.argmax(tr_preds, axis=1))
te_acc = np.mean(teY == np.argmax(te_preds, axis=1))

# Test accuracy should be between 98.9% and 99.3%
print 'train accuracy', tr_acc, 'test accuracy', te_acc
Example #6
0
layers = [
    Embedding(size=128, n_features=num_feats),
    #LstmRecurrent(size=32),
    #NOTE - to use a deep RNN, you need all but the final layers with seq_ouput=True
    #GatedRecurrent(size=128, seq_output=True),
    #GatedRecurrent(size=256, direction= 'backward' if REVERSE else 'forward'),
    GatedRecurrent(size=128, seq_output=True),
    GatedRecurrent(size=128),
    #Dense(size=64, activation='sigmoid'),
    Dense(size=len(lst_freq_tags), activation='sigmoid'),
]

#emd 128, gru 32/64 is good - 0.70006 causer

print("Creating Model")
model = RNN(layers=layers, cost='bce')

def find_cutoff(y_test, predictions):
    scale = 20.0

    min_val = round(min(predictions))
    max_val = round(max(predictions))
    diff = max_val - min_val
    inc = diff / scale

    cutoff = -1
    best = -1
    for i in range(1, int(scale)+1, 1):
        val = inc * i
        classes = [1 if p >= val else 0 for p in predictions]
        r, p, f1 = rpf1(y_test, classes)
import sys

# ---

# ---

print 'loading dataset'
d = Dataset(settings['FN_DATASET'], settings['FN_VOCABULARY'])
d.load()

print 'generating labeled training set'
train_text,train_labels = d.getNextWordPredTrainset(10)
#for t,l in zip(train_text,train_labels):
#    print t,'->',l

tokenizer = Tokenizer()
train_tokens = tokenizer.fit_transform(train_text)
save(train_tokens, settings['FN_TRAINED_TOKENIZER'])

layers = [
    Embedding(size=128, n_features=tokenizer.n_features),
    GatedRecurrent(size=128),
    Dense(size=1, activation='sigmoid')
]

model = RNN(layers=layers, cost='BinaryCrossEntropy')
model.fit(train_tokens, train_labels)

save(model, settings['FN_MODEL_NEXTWORDPRED'])
Example #8
0
trX, teX, trY, teY = load_gender_data(ntrain=10000) # Can increase up to 250K or so

tokenizer = Tokenizer(min_df=10, max_features=50000)
print trX[1] # see a blog example
trX = tokenizer.fit_transform(trX)
teX = tokenizer.transform(teX)
print tokenizer.n_features

layers = [
    Embedding(size=128, n_features=tokenizer.n_features),
    GatedRecurrent(size=256, activation='tanh', gate_activation='steeper_sigmoid', init='orthogonal', seq_output=False),
    Dense(size=1, activation='sigmoid', init='orthogonal') # sigmoid for binary classification
]

model = RNN(layers=layers, cost='bce') # bce is classification loss for binary classification and sigmoid output
for i in range(2):
    model.fit(trX, trY, n_epochs=1)
    tr_preds = model.predict(trX[:len(teY)])
    te_preds = model.predict(teX)

    tr_acc = metrics.accuracy_score(trY[:len(teY)], tr_preds > 0.5)
    te_acc = metrics.accuracy_score(teY, te_preds > 0.5)

    print i, tr_acc, te_acc

save(model, 'save_test.pkl') # How to save

model = load('save_test.pkl') # How to load

tr_preds = model.predict(trX[:len(teY)])
Example #9
0
    tokenizer = Tokenizer(min_df=10, max_features=100000)
    trX = tokenizer.fit_transform(trX)

    print("Training data tokenized.")

    layers = [
        Embedding(size=256, n_features=tokenizer.n_features),
        GatedRecurrent(size=512,
                       activation='tanh',
                       gate_activation='steeper_sigmoid',
                       init='orthogonal',
                       seq_output=False,
                       p_drop=0.75),
        Dense(size=1, activation='sigmoid', init='orthogonal')
    ]

    model = RNN(layers=layers, cost='bce', updater=Adadelta(lr=0.5))
    model.fit(trX, trY, n_epochs=10)

    te_data = pd.read_csv('testData.tsv', delimiter='\t')
    ids = te_data['id'].values
    teX = clean(te_data['review'].values)
    teX = tokenizer.transform(teX)
    pr_teX = model.predict(teX).flatten()

    pd.DataFrame(np.asarray([ids,
                             pr_teX]).T).to_csv('submission.csv',
                                                index=False,
                                                header=["id", "sentiment"])
def train_model(modeltype, delta):

    assert modeltype in ["gated_recurrent", "lstm_recurrent"]
    print "Begin Training"

    df_imdb_reviews = pd.read_csv('../data/imdb_review_data.tsv', escapechar='\\', delimiter='\t')

    X = clean(df_imdb_reviews['review'].values)
    y = df_imdb_reviews['sentiment'].values

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
    print "Tokenize"

    tokenizer = Tokenizer(min_df=10, max_features=100000)
    X_train = tokenizer.fit_transform(X_train)
    X_train = [[float(x) for x in  y] for y in X_train]
    X_test = tokenizer.transform(X_test)
    X_test = [[float(x) for x in  y] for y in X_test]

    print "Number of featers: {}".format(tokenizer.n_features)

    print "Training model"

    if modeltype == "gated_recurrent":
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            GatedRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid',
                           init='orthogonal', seq_output=True, p_drop=0.5),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]
    else:
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            LstmRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid',
                          init='orthogonal', seq_output=True, p_drop=0.5),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]

    # bce is classification loss for binary classification and sigmoid output
    model = RNN(layers=layers, cost='bce', updater=Adadelta, (lr=delta))
    model.fit(X_train, y_train, n_epochs=20)

    with open('../data/{}_tokenizer_delta_{}_pdrop_0.5.pkl'.format(modeltype, delta), 'w') as f:
        vectorizer = pickle.dump(tokenizer, f)
    with open('../data/{}_model_delta_{}._pdrop_0.5.pkl'.format(modeltype, delta), 'w') as f:
        model = pickle.dump(model, f)

    try:
        y_pred_te = model.predict(X_test).flatten() >= 0.5
        y_pred_tr = model.predict(X_train).flatten() >= 0.5
        print 'Test Accuracy: {}'.format(accuracy_score(y_test,y_pred_te))
        print 'Test Precision: {}'.format(precision_score(y_test,y_pred_te))
        print 'Test Recall: {}'.format(recall_score(y_test,y_pred_te))
        print 'Train Accuracy: {}'.format(accuracy_score(y_train,y_pred_tr))
        print 'Train Precision: {}'.format(precision_score(y_train,y_pred_tr))
        print 'Train Recall: {}'.format(recall_score(y_train,y_pred_tr))

    except:
        print "Unable to perform metrics"

    return tokenizer, model
num_feats = len(set(flatten(train_tokens)))


def get_labels(id):
    if id == 3:
        return [1, 0]
    else:
        return [0, 1]


seq_labels = map(lambda (l): map(get_labels, l), train_tokens)

layers = [
    Embedding(size=128, n_features=num_feats),
    GatedRecurrent(size=128, seq_output=True),
    Dense(size=num_feats, activation='softmax')
]

#iterator = SortedPadded(y_pad=True, y_dtype=intX)
#iterator = SortedPadded(y_dtype=intX)

#model = RNN(layers=layers, cost='seq_cce', iterator=iterator, Y=T.imatrix())
model = RNN(layers=layers, cost='seq_cce')
#model.fit(train_tokens, [1,0,1])
model.fit(train_tokens, train_tokens)

#model.predict(tokenizer.transform(["Frogs are awesome", "frogs are amphibious"]))
model.predict(train_tokens)
save(model, 'save_test.pkl')
model = load('save_test.pkl')
""" This model, although doing sequential prediction, predicts a tag per document not per word. """
def train_and_save_passage_tokenizer_and_rnn_model(x_train,
                                                   y_train,
                                                   x_test,
                                                   character_model=False):
    """Train and save Passage tokenizer and Passage RNN model.

    x_train and x_test should each be a series that's already been pre-preocessed: html->text, lowercase, removed
    punct/#s
    x_train+x_test are used to build the tokenizer.

    Note that character-based RNN is a work-in-progress and not actuallly implemented as of now.
    """

    # Note that we assume we have train/test reviews that had been preprocessed: html->text, lowercased, removed
    # punct/#s

    # Note in https://github.com/IndicoDataSolutions/Passage/blob/master/examples/sentiment.py they only
    # extract text from html, lowercase and strip (no punctuation removal)

    # Tokenization: Assign each word in the reviews an ID to be used in all reviews
    tokenizer = Tokenizer(min_df=10,
                          max_features=100000,
                          character=character_model)

    train_reviews_list = x_train.tolist()
    tokenizer.fit(train_reviews_list + x_test.tolist())

    # Tokenize training reviws (so can use to fit RNN model on)
    train_reviews_tokenized = tokenizer.transform(train_reviews_list)

    # Based on https://github.com/vinhkhuc/kaggle-sentiment-popcorn/blob/master/scripts/passage_nn.py which is based
    # on https://github.com/IndicoDataSolutions/Passage/blob/master/examples/sentiment.py

    # RNN Network:
    # -Each tokenized review will be converted into a sequence of words, where each word has an embedding representation
    # (256)
    # -RNN layer (GRU) attempts to find pattern in sequence of words
    # -Final dense layer is used as a logistic classifier to turn RNN output into a probability/prediction
    if not character_model:
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            # May replace with LstmRecurrent for LSTM layer
            GatedRecurrent(size=512,
                           activation='tanh',
                           gate_activation='steeper_sigmoid',
                           init='orthogonal',
                           seq_output=False,
                           p_drop=0.75),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]
    else:
        # Character-level RNN
        # Idea is to convert character tokenizations into one-hot encodings in which case
        # the embeddings layer is no longer needed
        train_reviews_tokenized = map(
            lambda r_indexes: pd.get_dummies(
                r_indexes, columns=range(tokenizer.n_features + 1)).values,
            train_reviews_tokenized)
        layers = [
            # May replace with LstmRecurrent for LSTM layer
            GatedRecurrent(size=100,
                           activation='tanh',
                           gate_activation='steeper_sigmoid',
                           init='orthogonal',
                           seq_output=False,
                           p_drop=0.75),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]

    # RNN classifer uses Binary Cross-Entropy as the cost function
    classifier = RNN(layers=layers, cost='bce', updater=Adadelta(lr=0.5))
    NUM_EPOCHS = 10
    # 10 epochs may take 10+ hours to run depending on machine
    classifier.fit(train_reviews_tokenized,
                   y_train.tolist(),
                   n_epochs=NUM_EPOCHS)

    # Store model and tokenizer
    if character_model:
        passage.utils.save(classifier, PASSAGE_CHAR_RNN_MODEL)
        _ = joblib.dump(tokenizer, PASSAGE_CHAR_TOKENIZER, compress=9)
    else:
        passage.utils.save(classifier, PASSAGE_RNN_MODEL)
        _ = joblib.dump(tokenizer, PASSAGE_TOKENIZER, compress=9)