Example #1
0
def main(ptrain, ntrain, ptest, ntest, out, modeltype):
    assert modeltype in ["gated_recurrent", "lstm_recurrent"]

    print("Using the %s model ..." % modeltype)
    print("Loading data ...")
    trX, trY = load_data(ptrain, ntrain)
    teX, teY = load_data(ptest, ntest)

    tokenizer = Tokenizer(min_df=10, max_features=100000)
    trX = tokenizer.fit_transform(trX)
    teX = tokenizer.transform(teX)

    print("Training ...")
    if modeltype == "gated_recurrent":
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            GatedRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid',
                           init='orthogonal', seq_output=False, p_drop=0.75),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]
    else:
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            LstmRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid',
                          init='orthogonal', seq_output=False, p_drop=0.75),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]

    model = RNN(layers=layers, cost='bce', updater=Adadelta(lr=0.5))
    model.fit(trX, trY, n_epochs=10)

    # Predicting the probabilities of positive labels
    print("Predicting ...")
    pr_teX = model.predict(teX).flatten()

    predY = np.ones(len(teY))
    predY[pr_teX < 0.5] = -1

    with open(out, "w") as f:
        for lab, pos_pr, neg_pr in zip(predY, pr_teX, 1 - pr_teX):
            f.write("%d %f %f\n" % (lab, pos_pr, neg_pr))
Example #2
0
	return [html.fromstring(text).text_content().lower().strip() for text in texts]
 
if __name__ == "__main__":
	tr_data = pd.read_csv('labeledTrainData.tsv', delimiter='\t') 
	trX = clean(tr_data['review'].values)
	trY = tr_data['sentiment'].values

	print("Training data loaded and cleaned.")

	tokenizer = Tokenizer(min_df=10, max_features=100000)
	trX = tokenizer.fit_transform(trX)

	print("Training data tokenized.")

	layers = [
		Embedding(size=256, n_features=tokenizer.n_features),
		GatedRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid', init='orthogonal', seq_output=False, p_drop=0.75),
		Dense(size=1, activation='sigmoid', init='orthogonal')
	]

	model = RNN(layers=layers, cost='bce', updater=Adadelta(lr=0.5))
	model.fit(trX, trY, n_epochs=10)

	te_data = pd.read_csv('testData.tsv', delimiter='\t')
	ids = te_data['id'].values
	teX = clean(te_data['review'].values)
	teX = tokenizer.transform(teX)
	pr_teX = model.predict(teX).flatten()
	 
	pd.DataFrame(np.asarray([ids, pr_teX]).T).to_csv('submission.csv', index=False, header=["id", "sentiment"])
Example #3
0
from passage.models import RNN
from passage.updates import NAG, Regularizer
from passage.layers import Generic, GatedRecurrent, Dense
from passage.utils import load, save

from load import load_mnist

trX, teX, trY, teY = load_mnist()

#Use generic layer - RNN processes a size 28 vector at a time scanning from left to right 
layers = [
	Generic(size=28),
	GatedRecurrent(size=512, p_drop=0.2),
	Dense(size=10, activation='softmax', p_drop=0.5)
]

#A bit of l2 helps with generalization, higher momentum helps convergence
updater = NAG(momentum=0.95, regularizer=Regularizer(l2=1e-4))

#Linear iterator for real valued data, cce cost for softmax
model = RNN(layers=layers, updater=updater, iterator='linear', cost='cce')
model.fit(trX, trY, n_epochs=20)

tr_preds = model.predict(trX[:len(teY)])
te_preds = model.predict(teX)

tr_acc = np.mean(trY[:len(teY)] == np.argmax(tr_preds, axis=1))
te_acc = np.mean(teY == np.argmax(te_preds, axis=1))

# Test accuracy should be between 98.9% and 99.3%
print 'train accuracy', tr_acc, 'test accuracy', te_acc
Example #4
0
    tokenizer = Tokenizer(min_df=10, max_features=100000)
    trX = tokenizer.fit_transform(trX)

    print("Training data tokenized.")

    layers = [
        Embedding(size=256, n_features=tokenizer.n_features),
        GatedRecurrent(size=512,
                       activation='tanh',
                       gate_activation='steeper_sigmoid',
                       init='orthogonal',
                       seq_output=False,
                       p_drop=0.75),
        Dense(size=1, activation='sigmoid', init='orthogonal')
    ]

    model = RNN(layers=layers, cost='bce', updater=Adadelta(lr=0.5))
    model.fit(trX, trY, n_epochs=10)

    te_data = pd.read_csv('testData.tsv', delimiter='\t')
    ids = te_data['id'].values
    teX = clean(te_data['review'].values)
    teX = tokenizer.transform(teX)
    pr_teX = model.predict(teX).flatten()

    pd.DataFrame(np.asarray([ids,
                             pr_teX]).T).to_csv('submission.csv',
                                                index=False,
                                                header=["id", "sentiment"])
                               ntest=1000)  # Can increase up to 250K or so
print len(trX), len(trY), len(teX), len(teY)

print teX.shape()
tokenizer = Tokenizer(min_df=10, max_features=50000)
#print trX[1] # see a blog example
trX = tokenizer.fit_transform(trX)

text = "Evropa je v jeho politika naprosto impotent ."
teX = tokenizer.transform(text)
print "number of tokens:" + str(len(trX))
print "number of feathures:" + str(tokenizer.n_features)

layers = [
    Embedding(size=256, n_features=tokenizer.n_features),
    GatedRecurrent(size=512, p_drop=0.2),
    Dense(size=10, activation='softmax', p_drop=0.5)
]

model = RNN(
    layers=layers, cost='cce'
)  # bce is classification loss for binary classification and sigmoid output
model = load('modelEcho.pkl')  # How to load

te_pred = model.predict(teX)

#tr_acc = metrics.accuracy_score(trY[:len(teY)], tr_preds > 0.5)
#te_acc = metrics.accuracy_score(teY, te_preds > 0.5)

print te_pred
Example #6
0
gru_sizes = [10, 20, 50, 100, 200, 1000]
epochs = [1, 3, 5, 7, 10]

for embedding_size, gru_size, num_epochs in product(embedding_sizes, gru_sizes, epochs):
    X_train, X_test, y_train, y_test = cross_validation.train_test_split(
        train_text, train_labels, test_size=0.1, random_state=0
    )

    layers = [
        Embedding(size=embedding_size, n_features=tokenizer.n_features),
        GatedRecurrent(size=gru_size),
        Dense(size=1, activation="sigmoid"),
    ]

    model = RNN(layers=layers, cost="BinaryCrossEntropy")
    model.fit(train_tokens, train_labels, n_epochs=int(num_epochs))

    modelfile_name = "stubborn_model.paramsearch.embedding{}.gru{}.epoch{}".format(embedding_size, gru_size, num_epochs)

    save(model, modelfile_name + ".pkl")
    pickle.dump(tokenizer, open(modelfile_name + "-tokenizer.pkl", "wb"))

    results = model.predict(tokenizer.transform(X_test))

    count = 0
    for r, g in zip(results, y_test):
        if int(r >= 0.5) == int(g):
            count += 1
    results = 1.0 * count / len(y_test)
    print(modelfile_name + "\t" + str(results))
def train_model(modeltype, delta):

    assert modeltype in ["gated_recurrent", "lstm_recurrent"]
    print "Begin Training"

    df_imdb_reviews = pd.read_csv('../data/imdb_review_data.tsv', escapechar='\\', delimiter='\t')

    X = clean(df_imdb_reviews['review'].values)
    y = df_imdb_reviews['sentiment'].values

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5, random_state=42)
    print "Tokenize"

    tokenizer = Tokenizer(min_df=10, max_features=100000)
    X_train = tokenizer.fit_transform(X_train)
    X_train = [[float(x) for x in  y] for y in X_train]
    X_test = tokenizer.transform(X_test)
    X_test = [[float(x) for x in  y] for y in X_test]

    print "Number of featers: {}".format(tokenizer.n_features)

    print "Training model"

    if modeltype == "gated_recurrent":
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            GatedRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid',
                           init='orthogonal', seq_output=True, p_drop=0.5),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]
    else:
        layers = [
            Embedding(size=256, n_features=tokenizer.n_features),
            LstmRecurrent(size=512, activation='tanh', gate_activation='steeper_sigmoid',
                          init='orthogonal', seq_output=True, p_drop=0.5),
            Dense(size=1, activation='sigmoid', init='orthogonal')
        ]

    # bce is classification loss for binary classification and sigmoid output
    model = RNN(layers=layers, cost='bce', updater=Adadelta, (lr=delta))
    model.fit(X_train, y_train, n_epochs=20)

    with open('../data/{}_tokenizer_delta_{}_pdrop_0.5.pkl'.format(modeltype, delta), 'w') as f:
        vectorizer = pickle.dump(tokenizer, f)
    with open('../data/{}_model_delta_{}._pdrop_0.5.pkl'.format(modeltype, delta), 'w') as f:
        model = pickle.dump(model, f)

    try:
        y_pred_te = model.predict(X_test).flatten() >= 0.5
        y_pred_tr = model.predict(X_train).flatten() >= 0.5
        print 'Test Accuracy: {}'.format(accuracy_score(y_test,y_pred_te))
        print 'Test Precision: {}'.format(precision_score(y_test,y_pred_te))
        print 'Test Recall: {}'.format(recall_score(y_test,y_pred_te))
        print 'Train Accuracy: {}'.format(accuracy_score(y_train,y_pred_tr))
        print 'Train Precision: {}'.format(precision_score(y_train,y_pred_tr))
        print 'Train Recall: {}'.format(recall_score(y_train,y_pred_tr))

    except:
        print "Unable to perform metrics"

    return tokenizer, model
Example #8
0
X_test = tokenizer.transform(newsgroups_test.data)
Y_train = newsgroups_train.target
Y_test = newsgroups_test.target

print tokenizer.n_features

layers = [
    Embedding(size=128, n_features=tokenizer.n_features),
    GatedRecurrent(size=256,
                   activation='tanh',
                   gate_activation='steeper_sigmoid',
                   init='orthogonal',
                   seq_output=False),
    Dense(size=1, activation='sigmoid',
          init='orthogonal')  # sigmoid for binary classification
]

model = RNN(
    layers=layers, cost='bce'
)  # bce is classification loss for binary classification and sigmoid output
for i in range(2):
    model.fit(X_train, Y_train, n_epochs=1)
    tr_preds = model.predict(X_train[:len(Y_test)])
    te_preds = model.predict(X_test)

    tr_acc = metrics.accuracy_score(Y_train[:len(Y_test)], tr_preds > 0.5)
    te_acc = metrics.accuracy_score(Y_test, te_preds > 0.5)

    print i, tr_acc, te_acc  # dataset too small to fully utilize Passage

save(model, 'model.pkl')
pickle.dump(tokenizer, open('tokenizer.pkl', 'wb'))
print "number of tokens:" + str(len(trX))
teX = tokenizer.transform(teX)
print "number of feathures:" + str(tokenizer.n_features)

layers = [
    Embedding(size=256, n_features=tokenizer.n_features),
    GatedRecurrent(size=725),
    Dense(size=10, activation='softmax')
]

model = RNN(layers=layers, cost='cce')
model.fit(trX, trY, n_epochs=10)
save(model, 'modelEcho.pkl')

tr_preds = model.predict(trX)
te_preds = model.predict(teX)

data = pd.DataFrame(trY)
data.to_csv('data/trY.vec')

data = pd.DataFrame(tr_preds)
data.to_csv('data/tr_preds.vec')

tr_acc = np.mean(np.argmax(trY, axis=1) == np.argmax(tr_preds, axis=1))
indexy = np.argmax(teY, axis=1)
data = pd.DataFrame(indexy)
data.to_csv('data/ev_agrmax.txt')
data = pd.DataFrame(np.argmax(te_preds, axis=1))
data.to_csv('data/ev_pred_agrmax.txt')
Example #10
0
from passage.layers import Embedding, GatedRecurrent, Dense
from passage.models import RNN
from passage.utils import save

tokenizer = Tokenizer(min_df=10, max_features=50000)
X_train = tokenizer.fit_transform(newsgroups_train.data)
X_test  = tokenizer.transform(newsgroups_test.data)
Y_train = newsgroups_train.target
Y_test  = newsgroups_test.target

print tokenizer.n_features

layers = [
    Embedding(size=128, n_features=tokenizer.n_features),
    GatedRecurrent(size=256, activation='tanh', gate_activation='steeper_sigmoid',
    			   init='orthogonal', seq_output=False),
    Dense(size=1, activation='sigmoid', init='orthogonal') # sigmoid for binary classification
]

model = RNN(layers=layers, cost='bce') # bce is classification loss for binary classification and sigmoid output
for i in range(2):
    model.fit(X_train, Y_train, n_epochs=1)
    tr_preds = model.predict(X_train[:len(Y_test)])
    te_preds = model.predict(X_test)

    tr_acc = metrics.accuracy_score(Y_train[:len(Y_test)], tr_preds > 0.5)
    te_acc = metrics.accuracy_score(Y_test, te_preds > 0.5)

    print i, tr_acc, te_acc # dataset too small to fully utilize Passage

save(model, 'model.pkl')
Example #11
0
#!/usr/bin/env python
# coding=utf-8
from passage.preprocessing import Tokenizer
from passage.layers import Embedding, GatedRecurrent, Dense
from passage.models import RNN
from passage.utils import save, load

train_text = ['hello world','foo bar']
train_labels = [0,1]
test_text = ['good man']
tokenizer = Tokenizer()
train_tokens = tokenizer.fit_transform(train_text)

layers = [
        Embedding(size=128, n_features=tokenizer.n_features),
        GatedRecurrent(size=128),
        Dense(size=1, activation='sigmoid')
]

model = RNN(layers=layers, cost='BinaryCrossEntropy')
model.fit(train_tokens, train_labels)

print model.predict(tokenizer.transform(test_text))
save(model, 'save_test.pkl')
model = load('save_test.pkl')
num_feats = len(set(flatten(train_tokens)))


def get_labels(id):
    if id == 3:
        return [1, 0]
    else:
        return [0, 1]


seq_labels = map(lambda (l): map(get_labels, l), train_tokens)

layers = [
    Embedding(size=128, n_features=num_feats),
    GatedRecurrent(size=128, seq_output=True),
    Dense(size=num_feats, activation='softmax')
]

#iterator = SortedPadded(y_pad=True, y_dtype=intX)
#iterator = SortedPadded(y_dtype=intX)

#model = RNN(layers=layers, cost='seq_cce', iterator=iterator, Y=T.imatrix())
model = RNN(layers=layers, cost='seq_cce')
#model.fit(train_tokens, [1,0,1])
model.fit(train_tokens, train_tokens)

#model.predict(tokenizer.transform(["Frogs are awesome", "frogs are amphibious"]))
model.predict(train_tokens)
save(model, 'save_test.pkl')
model = load('save_test.pkl')
""" This model, although doing sequential prediction, predicts a tag per document not per word. """