Example #1
0
def fit_hmm(Xs, Xtest, N_samples=100):
    model = MultinomialHMM(K, D)

    for X in Xs:
        model.add_data(X)

    samples = []
    lls = []
    test_lls = []
    pis = []
    zs = []
    timestamps = [time.time()]
    for smpl in progprint_xrange(N_samples):
        model.resample_model()
        timestamps.append(time.time())

        samples.append(model.copy_sample())
        # TODO: Use log_likelihood() to marginalize over z
        lls.append(model.log_likelihood())
        # lls.append(model.log_likelihood_fixed_z())
        test_lls.append(model.log_likelihood(Xtest))
        # pis.append(testmodel.pis()[0])
        zs.append(model.stateseqs[0])

    lls = np.array(lls)
    test_lls = np.array(test_lls)
    pis = np.array(pis)
    zs = np.array(zs)
    timestamps = np.array(timestamps)
    timestamps -= timestamps[0]

    return model, lls, test_lls, pis, zs, timestamps
Example #2
0
def fit_hmm(Xs, Xtest, D_hmm, N_samples=100):
    print("Fitting HMM with %d states" % D_hmm)
    model = MultinomialHMM(K, D_hmm)

    for X in Xs:
        model.add_data(X)

    init_results = (0, None, model.log_likelihood(),
                    model.log_likelihood(Xtest),
                    (model.log_likelihood(np.vstack((Xs[0], Xtest))) - model.log_likelihood(Xs[0])))

    def resample():
        tic = time.time()
        model.resample_model()
        toc = time.time() - tic

        return toc, None, model.log_likelihood(), \
            model.log_likelihood(Xtest), \
            (model.log_likelihood(np.vstack((Xs[0], Xtest))) - model.log_likelihood(Xs[0]))

    times, samples, lls, test_lls, pred_lls = \
        map(np.array, zip(*([init_results] + [resample() for _ in progprint_xrange(N_samples)])))
    timestamps = np.cumsum(times)

    return Results(lls, test_lls, pred_lls, samples, timestamps)
Example #3
0
def fit_hmm(Xs, Xtest, D_hmm, N_samples=100):
    print("Fitting HMM with %d states" % D_hmm)
    model = MultinomialHMM(K, D_hmm)

    for X in Xs:
        model.add_data(X)

    init_results = (0, None, model.log_likelihood(),
                    model.log_likelihood(Xtest),
                    (model.log_likelihood(np.vstack(
                        (Xs[0], Xtest))) - model.log_likelihood(Xs[0])))

    def resample():
        tic = time.time()
        model.resample_model()
        toc = time.time() - tic

        return toc, None, model.log_likelihood(), \
            model.log_likelihood(Xtest), \
            (model.log_likelihood(np.vstack((Xs[0], Xtest))) - model.log_likelihood(Xs[0]))

    times, samples, lls, test_lls, pred_lls = \
        map(np.array, zip(*([init_results] + [resample() for _ in progprint_xrange(N_samples)])))
    timestamps = np.cumsum(times)

    return Results(lls, test_lls, pred_lls, samples, timestamps)
Example #4
0
def fit_hmm(Xs, Xtest, D_hmm, N_samples=100):
    print("Fitting HMM with %d states" % D_hmm)
    model = MultinomialHMM(K, D_hmm, alpha_0=10.0)

    for X in Xs:
        model.add_data(X)

    compute_pred_ll = lambda: sum([model.log_likelihood(np.vstack((Xs[i], Xtest[i])))
                                   - model.log_likelihood(Xs[i])
                                   for i,Xt in enumerate(Xtest)])

    init_results = (0, None, model.log_likelihood(),
                    model.log_likelihood(Xtest),
                    compute_pred_ll())

    def resample():
        tic = time.time()
        model.resample_model()
        toc = time.time() - tic

        return toc, None, model.log_likelihood(), \
            np.nan, \
            compute_pred_ll()

    times, samples, lls, test_lls, pred_lls = \
        map(np.array, zip(*([init_results] +
            [resample() for _ in progprint_xrange(N_samples, perline=5)])))
    timestamps = np.cumsum(times)

    return Results(lls, test_lls, pred_lls, samples, timestamps)
Example #5
0
def fit_hmm(Xs, Xtest, D_hmm, N_samples=100):
    print("Fitting HMM with %d states" % D_hmm)
    model = MultinomialHMM(K, D_hmm, alpha_0=10.0)

    for X in Xs:
        model.add_data(X)

    compute_pred_ll = lambda: sum([
        model.log_likelihood(np.vstack(
            (Xs[i], Xtest[i]))) - model.log_likelihood(Xs[i])
        for i, Xt in enumerate(Xtest)
    ])

    init_results = (0, None, model.log_likelihood(),
                    model.log_likelihood(Xtest), compute_pred_ll())

    def resample():
        tic = time.time()
        model.resample_model()
        toc = time.time() - tic

        return toc, None, model.log_likelihood(), \
            np.nan, \
            compute_pred_ll()

    times, samples, lls, test_lls, pred_lls = \
        list(map(np.array, list(zip(*([init_results] +
            [resample() for _ in progprint_xrange(N_samples, perline=5)])))))
    timestamps = np.cumsum(times)

    return Results(lls, test_lls, pred_lls, samples, timestamps)
Example #6
0
def fit_hmm(Xs, Xtest, N_samples=100):
    model = MultinomialHMM(K, D)

    for X in Xs:
        model.add_data(X)

    samples = []
    lls = []
    test_lls = []
    pis = []
    zs = []
    timestamps = [time.time()]
    for smpl in progprint_xrange(N_samples):
        model.resample_model()
        timestamps.append(time.time())

        samples.append(model.copy_sample())
        # TODO: Use log_likelihood() to marginalize over z
        lls.append(model.log_likelihood())
        # lls.append(model.log_likelihood_fixed_z())
        test_lls.append(model.log_likelihood(Xtest))
        # pis.append(testmodel.pis()[0])
        zs.append(model.stateseqs[0])

    lls = np.array(lls)
    test_lls = np.array(test_lls)
    pis = np.array(pis)
    zs = np.array(zs)
    timestamps = np.array(timestamps)
    timestamps -= timestamps[0]

    return model, lls, test_lls, pis, zs, timestamps