def alg_change(self):
        algorithms = IntrinsicImagesAlgorithm.objects.filter(active=True) \
            .order_by('slug', '-id')
        algorithm_errors = {
            alg: [] for alg in algorithms
        }

        light_stacks = PhotoLightStack.objects.all()

        for alg in progress_bar(algorithms):
            use_alg = True
            for light_stack in light_stacks:
                photo_ids = light_stack.photos.values_list('id', flat=True)

                decompositions = IntrinsicImagesDecomposition.objects.filter(
                    algorithm=alg, photo_id__in=photo_ids)

                if len(decompositions) != len(photo_ids):
                    use_alg = False
                    break

                errors = []
                for d1 in decompositions:
                    r1 = open_image(d1.reflectance_image)
                    r1 = srgb_to_rgb(np.asarray(r1).astype(float) / 255.0)
                    r1 = np.mean(r1, axis=-1)

                    for d2 in decompositions:
                        if d1.photo_id == d2.photo_id:
                            continue
                        r2 = open_image(d2.reflectance_image)
                        r2 = srgb_to_rgb(np.asarray(r2).astype(float) / 255.0)
                        r2 = np.mean(r2, axis=-1)

                        errors.append(lmse(r1, r2))
                algorithm_errors[alg].append(np.mean(errors))

            if use_alg:
                print alg.slug, alg.id, \
                    np.mean(algorithm_errors[alg]), \
                    np.median(algorithm_errors[alg]), \
                    np.std(algorithm_errors[alg])

        errors = [
            (alg, np.mean(errors), np.median(errors), np.std(errors))
            for alg, errors in algorithm_errors.iteritems()
            if len(errors) == len(light_stacks)
        ]
        errors.sort(key=lambda x: x[1])

        for alg, e, m, s in errors:
            print alg.slug, alg.id, e, m, s
    def alg_change(self):
        algorithms = IntrinsicImagesAlgorithm.objects.filter(active=True) \
            .order_by('slug', '-id')
        algorithm_errors = {alg: [] for alg in algorithms}

        light_stacks = PhotoLightStack.objects.all()

        for alg in progress_bar(algorithms):
            use_alg = True
            for light_stack in light_stacks:
                photo_ids = light_stack.photos.values_list('id', flat=True)

                decompositions = IntrinsicImagesDecomposition.objects.filter(
                    algorithm=alg, photo_id__in=photo_ids)

                if len(decompositions) != len(photo_ids):
                    use_alg = False
                    break

                errors = []
                for d1 in decompositions:
                    r1 = open_image(d1.reflectance_image)
                    r1 = srgb_to_rgb(np.asarray(r1).astype(float) / 255.0)
                    r1 = np.mean(r1, axis=-1)

                    for d2 in decompositions:
                        if d1.photo_id == d2.photo_id:
                            continue
                        r2 = open_image(d2.reflectance_image)
                        r2 = srgb_to_rgb(np.asarray(r2).astype(float) / 255.0)
                        r2 = np.mean(r2, axis=-1)

                        errors.append(lmse(r1, r2))
                algorithm_errors[alg].append(np.mean(errors))

            if use_alg:
                print alg.slug, alg.id, \
                    np.mean(algorithm_errors[alg]), \
                    np.median(algorithm_errors[alg]), \
                    np.std(algorithm_errors[alg])

        errors = [(alg, np.mean(errors), np.median(errors), np.std(errors))
                  for alg, errors in algorithm_errors.iteritems()
                  if len(errors) == len(light_stacks)]
        errors.sort(key=lambda x: x[1])

        for alg, e, m, s in errors:
            print alg.slug, alg.id, e, m, s
Example #3
0
 def function(image, **kwargs):
     from intrinsic.algorithm.grosse2009 import intrinsic
     image = srgb_to_rgb(pil_to_numpy(image)) * 255.0
     mask = np.ones((image.shape[0:2]), dtype=bool)
     s, r = intrinsic.color_retinex(image, mask, **kwargs)
     r = image / np.clip(s, 1e-3, float('inf'))[:, :, np.newaxis]
     return r, s
Example #4
0
 def function(image, **kwargs):
     from intrinsic.algorithm.grosse2009 import intrinsic
     image = srgb_to_rgb(pil_to_numpy(image)) * 255.0
     mask = np.ones((image.shape[0:2]), dtype=bool)
     s, r = intrinsic.color_retinex(image, mask, **kwargs)
     r = image / np.clip(s, 1e-3, float('inf'))[:, :, np.newaxis]
     return r, s
Example #5
0
 def function(image, **kwargs):
     from intrinsic.algorithm.bell2014.solver import IntrinsicSolver
     from intrinsic.algorithm.bell2014.input import IntrinsicInput
     solver = IntrinsicSolver(
         input=IntrinsicInput(image_rgb=srgb_to_rgb(pil_to_numpy(image)), ),
         params=parameters,
     )
     r, s, decomposition = solver.solve()
     return r, s
Example #6
0
 def function(image, **kwargs):
     from intrinsic.algorithm.bell2014.solver import IntrinsicSolver
     from intrinsic.algorithm.bell2014.input import IntrinsicInput
     solver = IntrinsicSolver(
         input=IntrinsicInput(
             image_rgb=srgb_to_rgb(pil_to_numpy(image)),
         ),
         params=parameters,
     )
     r, s, decomposition = solver.solve()
     return r, s
Example #7
0
def evaluate_error(photo_id, reflectance_image, thresh=0.10, is_sRGB=True):
    """
    Evaluate the error for intrinsic image decomposition of a photo.

    :param photo_id: photo being decomposed

    :param reflectance_image: candidate reflectance image (in sRGB space)

    :thresh when a user states ``A < B``, we interpret that to mean that ``A <
        B - thresh``.  This must be a positive value in order to ensure that
        a constant reflectance image receives a nonzero error.

    :return: dict corresponding to fields on an
        :class:`intrinsic.models.IntrinsicImagesDecomposition` object.
    """

    if isinstance(reflectance_image, basestring):
        reflectance_image = imread(reflectance_image).astype(float) / 255.0
    elif not isinstance(reflectance_image, np.ndarray):
        reflectance_image = np.asarray(reflectance_image).astype(float) / 255.0

    #if reflectance_image.shape[1] != 300:
        #z = 300.0 / reflectance_image.shape[1]
        #reflectance_image = interpolation.zoom(
            #reflectance_image, zoom=(z, z, 1))

    rows, cols, _ = reflectance_image.shape
    if is_sRGB:
        reflectance_image_linear = srgb_to_rgb(reflectance_image)
    else:
        reflectance_image_linear = reflectance_image

    # get the luminance of the reflectance channel

    # fetch comparisons
    comparisons = list(
        IntrinsicPointComparison.objects.filter(
            photo_id=photo_id,
            point1__opaque=True,
            point2__opaque=True,
            darker__isnull=False,
            darker__in=("1", "2", "E"),
            darker_score__isnull=False,
            darker_score__gt=0
        ).select_related('point1')
    )

    # fetch points
    points = IntrinsicPoint.objects.filter(photo_id=photo_id)
    point_id_to_l = {
        p.id: np.mean(reflectance_image_linear[int(p.y * rows), int(p.x * cols), :])
        for p in points
    }

    # ratio thresholds
    eq_thresh = 1.0 + thresh

    # error from a set of comparisons
    def comparison_error(comps):
        error_num = 0.0
        error_den = 0.0

        for c in comps:
            if c.darker not in ('1', '2', 'E'):
                raise ValueError("Unknown value of darker: %s" % c.darker)

            l1 = max(point_id_to_l[c.point1_id], 1e-10)
            l2 = max(point_id_to_l[c.point2_id], 1e-10)

            if l2 / l1 > eq_thresh:
                r_darker = '1'
            elif l1 / l2 > eq_thresh:
                r_darker = '2'
            else:
                r_darker = 'E'

            if c.darker != r_darker:
                error_num += c.darker_score
            error_den += c.darker_score

        if error_den:
            return error_num / error_den
        else:
            return None

    # return value
    update_kwargs = {
        'error_comparison_thresh': thresh,
    }

    # all errors
    update_kwargs['num'] = len(comparisons)
    if comparisons:
        update_kwargs['mean_error'] = comparison_error(comparisons)
    else:
        update_kwargs['mean_error'] = None

    # all dense errors
    comparisons_dense = [c for c in comparisons if c.point1.min_separation < 0.05]
    update_kwargs['num_dense'] = len(comparisons_dense)
    if comparisons_dense:
        update_kwargs['mean_dense_error'] = comparison_error(comparisons_dense)
    else:
        update_kwargs['mean_dense_error'] = None

    # all dense errors
    comparisons_sparse = [c for c in comparisons if c.point1.min_separation > 0.05]
    update_kwargs['num_sparse'] = len(comparisons_sparse)
    if comparisons_sparse:
        update_kwargs['mean_sparse_error'] = comparison_error(comparisons_sparse)
    else:
        update_kwargs['mean_sparse_error'] = None

    # equality errors
    comparisons_eq = [c for c in comparisons if c.darker == "E"]
    update_kwargs['num_eq'] = len(comparisons_eq)
    if comparisons_eq:
        update_kwargs['mean_eq_error'] = comparison_error(comparisons_eq)
    else:
        update_kwargs['mean_eq_error'] = None

    # inequality errors
    comparisons_neq = [c for c in comparisons if c.darker in ("1", "2")]
    update_kwargs['num_neq'] = len(comparisons_neq)
    if comparisons_neq:
        update_kwargs['mean_neq_error'] = comparison_error(comparisons_neq)
    else:
        update_kwargs['mean_neq_error'] = None

    # sum of two split errors
    if (update_kwargs['mean_eq_error'] is not None
            or update_kwargs['mean_neq_error'] is not None):
        f = lambda x: x if x else 0
        update_kwargs['mean_sum_error'] = (
            f(update_kwargs['mean_eq_error']) +
            f(update_kwargs['mean_neq_error']))
    else:
        update_kwargs['mean_sum_error'] = None

    return update_kwargs
Example #8
0
def evaluate_error(photo_id, reflectance_image, thresh=0.10, is_sRGB=True):
    """
    Evaluate the error for intrinsic image decomposition of a photo.

    :param photo_id: photo being decomposed

    :param reflectance_image: candidate reflectance image (in sRGB space)

    :thresh when a user states ``A < B``, we interpret that to mean that ``A <
        B - thresh``.  This must be a positive value in order to ensure that
        a constant reflectance image receives a nonzero error.

    :return: dict corresponding to fields on an
        :class:`intrinsic.models.IntrinsicImagesDecomposition` object.
    """

    if isinstance(reflectance_image, basestring):
        reflectance_image = imread(reflectance_image).astype(float) / 255.0
    elif not isinstance(reflectance_image, np.ndarray):
        reflectance_image = np.asarray(reflectance_image).astype(float) / 255.0

    #if reflectance_image.shape[1] != 300:
    #z = 300.0 / reflectance_image.shape[1]
    #reflectance_image = interpolation.zoom(
    #reflectance_image, zoom=(z, z, 1))

    rows, cols, _ = reflectance_image.shape
    if is_sRGB:
        reflectance_image_linear = srgb_to_rgb(reflectance_image)
    else:
        reflectance_image_linear = reflectance_image

    # get the luminance of the reflectance channel

    # fetch comparisons
    comparisons = list(
        IntrinsicPointComparison.objects.filter(
            photo_id=photo_id,
            point1__opaque=True,
            point2__opaque=True,
            darker__isnull=False,
            darker__in=("1", "2", "E"),
            darker_score__isnull=False,
            darker_score__gt=0).select_related('point1'))

    # fetch points
    points = IntrinsicPoint.objects.filter(photo_id=photo_id)
    point_id_to_l = {
        p.id: np.mean(reflectance_image_linear[int(p.y * rows),
                                               int(p.x * cols), :])
        for p in points
    }

    # ratio thresholds
    eq_thresh = 1.0 + thresh

    # error from a set of comparisons
    def comparison_error(comps):
        error_num = 0.0
        error_den = 0.0

        for c in comps:
            if c.darker not in ('1', '2', 'E'):
                raise ValueError("Unknown value of darker: %s" % c.darker)

            l1 = max(point_id_to_l[c.point1_id], 1e-10)
            l2 = max(point_id_to_l[c.point2_id], 1e-10)

            if l2 / l1 > eq_thresh:
                r_darker = '1'
            elif l1 / l2 > eq_thresh:
                r_darker = '2'
            else:
                r_darker = 'E'

            if c.darker != r_darker:
                error_num += c.darker_score
            error_den += c.darker_score

        if error_den:
            return error_num / error_den
        else:
            return None

    # return value
    update_kwargs = {
        'error_comparison_thresh': thresh,
    }

    # all errors
    update_kwargs['num'] = len(comparisons)
    if comparisons:
        update_kwargs['mean_error'] = comparison_error(comparisons)
    else:
        update_kwargs['mean_error'] = None

    # all dense errors
    comparisons_dense = [
        c for c in comparisons if c.point1.min_separation < 0.05
    ]
    update_kwargs['num_dense'] = len(comparisons_dense)
    if comparisons_dense:
        update_kwargs['mean_dense_error'] = comparison_error(comparisons_dense)
    else:
        update_kwargs['mean_dense_error'] = None

    # all dense errors
    comparisons_sparse = [
        c for c in comparisons if c.point1.min_separation > 0.05
    ]
    update_kwargs['num_sparse'] = len(comparisons_sparse)
    if comparisons_sparse:
        update_kwargs['mean_sparse_error'] = comparison_error(
            comparisons_sparse)
    else:
        update_kwargs['mean_sparse_error'] = None

    # equality errors
    comparisons_eq = [c for c in comparisons if c.darker == "E"]
    update_kwargs['num_eq'] = len(comparisons_eq)
    if comparisons_eq:
        update_kwargs['mean_eq_error'] = comparison_error(comparisons_eq)
    else:
        update_kwargs['mean_eq_error'] = None

    # inequality errors
    comparisons_neq = [c for c in comparisons if c.darker in ("1", "2")]
    update_kwargs['num_neq'] = len(comparisons_neq)
    if comparisons_neq:
        update_kwargs['mean_neq_error'] = comparison_error(comparisons_neq)
    else:
        update_kwargs['mean_neq_error'] = None

    # sum of two split errors
    if (update_kwargs['mean_eq_error'] is not None
            or update_kwargs['mean_neq_error'] is not None):
        f = lambda x: x if x else 0
        update_kwargs['mean_sum_error'] = (f(update_kwargs['mean_eq_error']) +
                                           f(update_kwargs['mean_neq_error']))
    else:
        update_kwargs['mean_sum_error'] = None

    return update_kwargs
Example #9
0
 def function(image, **kwargs):
     image = srgb_to_rgb(pil_to_numpy(image))
     return image, np.ones_like(image)
Example #10
0
 def function(image, **kwargs):
     image = srgb_to_rgb(pil_to_numpy(image))
     s = np.clip(np.sum(image, axis=-1), 1e-3, float('inf'))
     r = image / s[:, :, np.newaxis]
     return r, s
Example #11
0
 def function(image, **kwargs):
     image = srgb_to_rgb(pil_to_numpy(image))
     return image, np.ones_like(image)
Example #12
0
 def function(image, **kwargs):
     image = srgb_to_rgb(pil_to_numpy(image))
     s = np.clip(np.sum(image, axis=-1), 1e-3, float('inf'))
     r = image / s[:, :, np.newaxis]
     return r, s