def main(config="../../config.yaml", namespace=""): if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] hosts = parties.host[0] guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } # guest_train_data = {"name": "default_credit_hetero_guest", "namespace": f"experiment{namespace}"} # host_train_data = {"name": "default_credit_hetero_host", "namespace": f"experiment{namespace}"} # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=hosts) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance( role='host', party_id=hosts).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0", output_format='dense') # get DataTransform party instance of guest data_transform_0_guest_party_instance = data_transform_0.get_party_instance( role='guest', party_id=guest) # configure DataTransform for guest data_transform_0_guest_party_instance.component_param(with_label=True) # get and configure DataTransform party instance of host data_transform_0.get_party_instance( role='host', party_id=hosts).component_param(with_label=False) # define Intersection components intersection_0 = Intersection(name="intersection_0") pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) lr_param = { "name": "hetero_sshe_lr_0", "penalty": "L2", "tol": 0.0001, "alpha": 10, "max_iter": 30, "early_stop": "weight_diff", "batch_size": -1, "learning_rate": 0.3, "decay": 0.5, "init_param": { "init_method": "const", "init_const": 200, "fit_intercept": False }, "encrypt_param": { "key_length": 1024 } } hetero_sshe_lr_0 = HeteroSSHELR(**lr_param) pipeline.add_component(hetero_sshe_lr_0, data=Data(train_data=intersection_0.output.data)) evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary") pipeline.add_component(evaluation_0, data=Data(data=hetero_sshe_lr_0.output.data)) pipeline.compile() # fit model pipeline.fit() # query component summary prettify(pipeline.get_component("hetero_sshe_lr_0").get_summary()) prettify(pipeline.get_component("evaluation_0").get_summary()) pipeline.deploy_component( [data_transform_0, intersection_0, hetero_sshe_lr_0]) predict_pipeline = PipeLine() # add data reader onto predict pipeline predict_pipeline.add_component(reader_0) # add selected components from train pipeline onto predict pipeline # specify data source predict_pipeline.add_component( pipeline, data=Data(predict_input={ pipeline.data_transform_0.input.data: reader_0.output.data })) # run predict model predict_pipeline.predict() return pipeline
def main(config="../../config.yaml", param="./vehicle_sshe_lr_config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] if isinstance(param, str): param = JobConfig.load_from_file(param) assert isinstance(param, dict) data_set = param.get("data_guest").split('/')[-1] if data_set == "vehicle_scale_hetero_guest.csv": guest_data_table = 'vehicle_scale_hetero_guest' host_data_table = 'vehicle_scale_hetero_host' else: raise ValueError(f"Cannot recognized data_set: {data_set}") guest_train_data = { "name": guest_data_table, "namespace": f"experiment{namespace}" } host_train_data = { "name": host_data_table, "namespace": f"experiment{namespace}" } # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=host, arbiter=arbiter) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) # define DataTransform components data_transform_0 = DataTransform( name="data_transform_0") # start component numbering at 0 # get DataTransform party instance of guest data_transform_0_guest_party_instance = data_transform_0.get_party_instance( role='guest', party_id=guest) # configure DataTransform for guest data_transform_0_guest_party_instance.component_param( with_label=True, output_format="dense") # get and configure DataTransform party instance of host data_transform_0.get_party_instance( role='host', party_id=host).component_param(with_label=False) # define Intersection component intersection_0 = Intersection(name="intersection_0") lr_param = {} config_param = { "penalty": param["penalty"], "max_iter": param["max_iter"], "alpha": param["alpha"], "learning_rate": param["learning_rate"], "optimizer": param["optimizer"], # use sgd "batch_size": param["batch_size"], "early_stop": "diff", "init_param": { "init_method": param.get("init_method", 'random_uniform'), "random_seed": param.get("random_seed", 103), "fit_intercept": True }, "reveal_strategy": param.get("reveal_strategy", "respectively"), "reveal_every_iter": True } lr_param.update(config_param) print(f"lr_param: {lr_param}, data_set: {data_set}") hetero_sshe_lr_0 = HeteroSSHELR(name='hetero_sshe_lr_0', **lr_param) hetero_sshe_lr_1 = HeteroSSHELR(name='hetero_sshe_lr_1') evaluation_0 = Evaluation(name='evaluation_0', eval_type="multi") # add components to pipeline, in order of task execution pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(hetero_sshe_lr_0, data=Data(train_data=intersection_0.output.data)) pipeline.add_component(hetero_sshe_lr_1, data=Data(test_data=intersection_0.output.data), model=Model(hetero_sshe_lr_0.output.model)) pipeline.add_component(evaluation_0, data=Data(data=hetero_sshe_lr_0.output.data)) # compile pipeline once finished adding modules, this step will form conf and dsl files for running job pipeline.compile() # fit model pipeline.fit() # query component summary result_summary = parse_summary_result( pipeline.get_component("evaluation_0").get_summary()) lr_0_data = pipeline.get_component( "hetero_sshe_lr_0").get_output_data().get("data") lr_1_data = pipeline.get_component( "hetero_sshe_lr_1").get_output_data().get("data") lr_0_score_label = extract_data(lr_0_data, "predict_result", keep_id=True) lr_1_score_label = extract_data(lr_1_data, "predict_result", keep_id=True) metric_lr = { "score_diversity_ratio": classification_metric.Distribution.compute(lr_0_score_label, lr_1_score_label) } result_summary["distribution_metrics"] = {"hetero_lr": metric_lr} data_summary = { "train": { "guest": guest_train_data["name"], "host": host_train_data["name"] }, "test": { "guest": guest_train_data["name"], "host": host_train_data["name"] } } print(f"result_summary: {result_summary}; data_summary: {data_summary}") return data_summary, result_summary
def main(config="../../config.yaml", namespace=""): if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] hosts = parties.host[0] guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=hosts) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance( role='host', party_id=hosts).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0", output_format='dense') # get DataTransform party instance of guest data_transform_0_guest_party_instance = data_transform_0.get_party_instance( role='guest', party_id=guest) # configure DataTransform for guest data_transform_0_guest_party_instance.component_param(with_label=True) # get and configure DataTransform party instance of host data_transform_0.get_party_instance( role='host', party_id=hosts).component_param(with_label=False) # define Intersection components intersection_0 = Intersection(name="intersection_0") selection_param = { "select_col_indexes": -1, "filter_methods": ["manually"] } hetero_feature_selection_0 = HeteroFeatureSelection( name="hetero_feature_selection_0", **selection_param) hetero_feature_selection_0.get_party_instance( role='guest', party_id=guest).component_param( manually_param={"left_col_indexes": [0]}) pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(hetero_feature_selection_0, data=Data(data=intersection_0.output.data)) lr_param = { "name": "hetero_sshe_lr_0", "penalty": None, "optimizer": "sgd", "tol": 0.0001, "alpha": 0.01, "max_iter": 30, "early_stop": "diff", "batch_size": -1, "learning_rate": 0.15, "init_param": { "init_method": "random_uniform" }, "reveal_strategy": "encrypted_reveal_in_host", "reveal_every_iter": False } hetero_sshe_lr_0 = HeteroSSHELR(**lr_param) pipeline.add_component( hetero_sshe_lr_0, data=Data(train_data=hetero_feature_selection_0.output.data)) evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary") pipeline.add_component(evaluation_0, data=Data(data=hetero_sshe_lr_0.output.data)) pipeline.compile() # fit model pipeline.fit() # query component summary prettify(pipeline.get_component("hetero_sshe_lr_0").get_summary()) prettify(pipeline.get_component("evaluation_0").get_summary()) return pipeline
def main(config="../../config.yaml", namespace=""): if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] hosts = parties.host[0] guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } # guest_train_data = {"name": "default_credit_hetero_guest", "namespace": f"experiment{namespace}"} # host_train_data = {"name": "default_credit_hetero_host", "namespace": f"experiment{namespace}"} # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=hosts) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance( role='host', party_id=hosts).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0", output_format='dense') # get DataTransform party instance of guest data_transform_0_guest_party_instance = data_transform_0.get_party_instance( role='guest', party_id=guest) # configure DataTransform for guest data_transform_0_guest_party_instance.component_param(with_label=True) # get and configure DataTransform party instance of host data_transform_0.get_party_instance( role='host', party_id=hosts).component_param(with_label=False) # define Intersection components intersection_0 = Intersection(name="intersection_0") pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) lr_param = { "penalty": "L2", "optimizer": "rmsprop", "tol": 0.0001, "alpha": 0.01, "early_stop": "diff", "batch_size": -1, "learning_rate": 0.15, "init_param": { "init_method": "zeros", "fit_intercept": True }, "encrypt_param": { "key_length": 1024 }, "reveal_strategy": "respectively", "reveal_every_iter": True, "callback_param": { "callbacks": ["ModelCheckpoint"], "validation_freqs": 1, "early_stopping_rounds": 1, "metrics": None, "use_first_metric_only": False, "save_freq": 1 } } hetero_sshe_lr_0 = HeteroSSHELR(name="hetero_sshe_lr_0", max_iter=3, **lr_param) hetero_sshe_lr_1 = HeteroSSHELR(name="hetero_sshe_lr_1", max_iter=30, **lr_param) pipeline.add_component(hetero_sshe_lr_0, data=Data(train_data=intersection_0.output.data)) pipeline.add_component(hetero_sshe_lr_1, data=Data(train_data=intersection_0.output.data), model=Model(model=hetero_sshe_lr_0.output.model)) evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary") pipeline.add_component(evaluation_0, data=Data(data=hetero_sshe_lr_1.output.data)) pipeline.compile() # fit model pipeline.fit() # query component summary prettify(pipeline.get_component("hetero_sshe_lr_0").get_summary()) prettify(pipeline.get_component("hetero_sshe_lr_1").get_summary()) prettify(pipeline.get_component("evaluation_0").get_summary()) return pipeline
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } pipeline = PipeLine().set_initiator( role='guest', party_id=guest).set_roles(guest=guest, host=host, arbiter=arbiter) reader_0 = Reader(name="reader_0") reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_0.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) reader_1 = Reader(name="reader_1") reader_1.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_1.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) reader_2 = Reader(name="reader_2") reader_2.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) reader_2.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) data_transform_0 = DataTransform(name="data_transform_0") data_transform_0.get_party_instance( role='guest', party_id=guest).component_param(with_label=True, missing_fill=True, outlier_replace=True) data_transform_0.get_party_instance( role='host', party_id=host).component_param(with_label=False, missing_fill=True, outlier_replace=True) data_transform_1 = DataTransform(name="data_transform_1") data_transform_2 = DataTransform(name="data_transform_2") intersection_0 = Intersection(name="intersection_0") intersection_1 = Intersection(name="intersection_1") intersection_2 = Intersection(name="intersection_2") union_0 = Union(name="union_0") federated_sample_0 = FederatedSample(name="federated_sample_0", mode="stratified", method="downsample", fractions=[[0, 1.0], [1, 1.0]]) feature_scale_0 = FeatureScale(name="feature_scale_0") feature_scale_1 = FeatureScale(name="feature_scale_1") hetero_feature_binning_0 = HeteroFeatureBinning( name="hetero_feature_binning_0") hetero_feature_binning_1 = HeteroFeatureBinning( name="hetero_feature_binning_1") hetero_feature_selection_0 = HeteroFeatureSelection( name="hetero_feature_selection_0") hetero_feature_selection_1 = HeteroFeatureSelection( name="hetero_feature_selection_1") one_hot_0 = OneHotEncoder(name="one_hot_0") one_hot_1 = OneHotEncoder(name="one_hot_1") hetero_lr_0 = HeteroLR(name="hetero_lr_0", penalty="L2", optimizer="rmsprop", tol=1e-5, init_param={"init_method": "random_uniform"}, alpha=0.01, max_iter=3, early_stop="diff", batch_size=320, learning_rate=0.15) hetero_lr_1 = HeteroLR(name="hetero_lr_1") hetero_lr_2 = HeteroLR(name="hetero_lr_2", penalty="L2", optimizer="rmsprop", tol=1e-5, init_param={"init_method": "random_uniform"}, alpha=0.01, max_iter=3, early_stop="diff", batch_size=320, learning_rate=0.15, cv_param={ "n_splits": 5, "shuffle": True, "random_seed": 103, "need_cv": True }) hetero_sshe_lr_0 = HeteroSSHELR( name="hetero_sshe_lr_0", reveal_every_iter=True, reveal_strategy="respectively", penalty="L2", optimizer="rmsprop", tol=1e-5, batch_size=320, learning_rate=0.15, init_param={"init_method": "random_uniform"}, alpha=0.01, max_iter=3) hetero_sshe_lr_1 = HeteroSSHELR(name="hetero_sshe_lr_1") local_baseline_0 = LocalBaseline(name="local_baseline_0", model_name="LogisticRegression", model_opts={ "penalty": "l2", "tol": 0.0001, "C": 1.0, "fit_intercept": True, "solver": "lbfgs", "max_iter": 5, "multi_class": "ovr" }) local_baseline_0.get_party_instance( role='guest', party_id=guest).component_param(need_run=True) local_baseline_0.get_party_instance( role='host', party_id=host).component_param(need_run=False) local_baseline_1 = LocalBaseline(name="local_baseline_1") hetero_secureboost_0 = HeteroSecureBoost(name="hetero_secureboost_0", num_trees=3) hetero_secureboost_1 = HeteroSecureBoost(name="hetero_secureboost_1") hetero_secureboost_2 = HeteroSecureBoost(name="hetero_secureboost_2", num_trees=3, cv_param={ "shuffle": False, "need_cv": True }) hetero_linr_0 = HeteroLinR(name="hetero_linr_0", penalty="L2", optimizer="sgd", tol=0.001, alpha=0.01, max_iter=3, early_stop="weight_diff", batch_size=-1, learning_rate=0.15, decay=0.0, decay_sqrt=False, init_param={"init_method": "zeros"}, floating_point_precision=23) hetero_linr_1 = HeteroLinR(name="hetero_linr_1") hetero_sshe_linr_0 = HeteroSSHELinR(name="hetero_sshe_linr_0", max_iter=5, early_stop="weight_diff", batch_size=-1) hetero_sshe_linr_1 = HeteroSSHELinR(name="hetero_sshe_linr_1") hetero_poisson_0 = HeteroPoisson(name="hetero_poisson_0", early_stop="weight_diff", max_iter=10, alpha=100.0, batch_size=-1, learning_rate=0.01, optimizer="rmsprop", exposure_colname="exposure", decay_sqrt=False, tol=0.001, init_param={"init_method": "zeros"}, penalty="L2") hetero_poisson_1 = HeteroPoisson(name="hetero_poisson_1") hetero_sshe_poisson_0 = HeteroSSHEPoisson(name="hetero_sshe_poisson_0", max_iter=5) hetero_sshe_poisson_1 = HeteroSSHEPoisson(name="hetero_sshe_poisson_1") evaluation_0 = Evaluation(name="evaluation_0") evaluation_1 = Evaluation(name="evaluation_1") evaluation_2 = Evaluation(name="evaluation_2") pipeline.add_component(reader_0) pipeline.add_component(reader_1) pipeline.add_component(reader_2) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(data_transform_1, data=Data(data=reader_1.output.data), model=Model(model=data_transform_0.output.model)) pipeline.add_component(data_transform_2, data=Data(data=reader_2.output.data), model=Model(model=data_transform_0.output.model)) pipeline.add_component(intersection_0, data=Data(data=data_transform_0.output.data)) pipeline.add_component(intersection_1, data=Data(data=data_transform_1.output.data)) pipeline.add_component(intersection_2, data=Data(data=data_transform_2.output.data)) pipeline.add_component( union_0, data=Data( data=[intersection_0.output.data, intersection_2.output.data])) pipeline.add_component(federated_sample_0, data=Data(data=intersection_1.output.data)) pipeline.add_component(feature_scale_0, data=Data(data=union_0.output.data)) pipeline.add_component(feature_scale_1, data=Data(data=federated_sample_0.output.data), model=Model(model=feature_scale_0.output.model)) pipeline.add_component(hetero_feature_binning_0, data=Data(data=feature_scale_0.output.data)) pipeline.add_component( hetero_feature_binning_1, data=Data(data=feature_scale_1.output.data), model=Model(model=hetero_feature_binning_0.output.model)) pipeline.add_component( hetero_feature_selection_0, data=Data(data=hetero_feature_binning_0.output.data)) pipeline.add_component( hetero_feature_selection_1, data=Data(data=hetero_feature_binning_1.output.data), model=Model(model=hetero_feature_selection_0.output.model)) pipeline.add_component( one_hot_0, data=Data(data=hetero_feature_selection_0.output.data)) pipeline.add_component( one_hot_1, data=Data(data=hetero_feature_selection_1.output.data), model=Model(model=one_hot_0.output.model)) pipeline.add_component(hetero_lr_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_lr_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_lr_0.output.model)) pipeline.add_component(hetero_lr_2, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(local_baseline_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(local_baseline_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=local_baseline_0.output.model)) pipeline.add_component(hetero_sshe_lr_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_sshe_lr_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_sshe_lr_0.output.model)) pipeline.add_component(hetero_secureboost_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component( hetero_secureboost_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_secureboost_0.output.model)) pipeline.add_component(hetero_secureboost_2, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_linr_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_linr_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_linr_0.output.model)) pipeline.add_component(hetero_sshe_linr_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_sshe_linr_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_sshe_linr_0.output.model)) pipeline.add_component(hetero_poisson_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component(hetero_poisson_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_poisson_0.output.model)) pipeline.add_component( evaluation_0, data=Data(data=[ hetero_lr_0.output.data, hetero_lr_1.output.data, hetero_sshe_lr_0.output.data, hetero_sshe_lr_1.output.data, local_baseline_0.output.data, local_baseline_1.output.data ])) pipeline.add_component(hetero_sshe_poisson_0, data=Data(train_data=one_hot_0.output.data)) pipeline.add_component( hetero_sshe_poisson_1, data=Data(test_data=one_hot_1.output.data), model=Model(model=hetero_sshe_poisson_0.output.model)) pipeline.add_component( evaluation_1, data=Data(data=[ hetero_linr_0.output.data, hetero_linr_1.output.data, hetero_sshe_linr_0.output.data, hetero_linr_1.output.data ])) pipeline.add_component( evaluation_2, data=Data(data=[ hetero_poisson_0.output.data, hetero_poisson_1.output.data, hetero_sshe_poisson_0.output.data, hetero_sshe_poisson_1.output.data ])) pipeline.compile() pipeline.fit() print(pipeline.get_component("evaluation_0").get_summary()) print(pipeline.get_component("evaluation_1").get_summary()) print(pipeline.get_component("evaluation_2").get_summary())
def main(config="../../config.yaml", namespace=""): # obtain config if isinstance(config, str): config = load_job_config(config) parties = config.parties guest = parties.guest[0] host = parties.host[0] arbiter = parties.arbiter[0] guest_train_data = { "name": "breast_hetero_guest", "namespace": f"experiment{namespace}" } host_train_data = { "name": "breast_hetero_host", "namespace": f"experiment{namespace}" } # initialize pipeline pipeline = PipeLine() # set job initiator pipeline.set_initiator(role='guest', party_id=guest) # set participants information pipeline.set_roles(guest=guest, host=host, arbiter=arbiter) # define Reader components to read in data reader_0 = Reader(name="reader_0") # configure Reader for guest reader_0.get_party_instance( role='guest', party_id=guest).component_param(table=guest_train_data) # configure Reader for host reader_0.get_party_instance( role='host', party_id=host).component_param(table=host_train_data) # define DataTransform components data_transform_0 = DataTransform( name="data_transform_0", with_label=True, output_format="dense") # start component numbering at 0 data_transform_0.get_party_instance( role="host", party_id=host).component_param(with_label=False) intersect_0 = Intersection(name='intersect_0') scale_0 = FeatureScale(name='scale_0', need_run=False) sample_weight_0 = SampleWeight(name="sample_weight_0", class_weight={ "0": 1, "1": 2 }) sample_weight_0.get_party_instance( role="host", party_id=host).component_param(need_run=False) param = { "penalty": None, "optimizer": "sgd", "tol": 1e-05, "alpha": 0.01, "max_iter": 3, "early_stop": "weight_diff", "batch_size": 320, "learning_rate": 0.15, "decay": 0, "decay_sqrt": True, "init_param": { "init_method": "ones" }, "reveal_every_iter": False, "reveal_strategy": "respectively" } hetero_sshe_lr_0 = HeteroSSHELR(name='hetero_sshe_lr_0', **param) evaluation_0 = Evaluation(name='evaluation_0') # add components to pipeline, in order of task execution pipeline.add_component(reader_0) pipeline.add_component(data_transform_0, data=Data(data=reader_0.output.data)) pipeline.add_component(intersect_0, data=Data(data=data_transform_0.output.data)) # set data input sources of intersection components pipeline.add_component(scale_0, data=Data(data=intersect_0.output.data)) pipeline.add_component(sample_weight_0, data=Data(data=scale_0.output.data)) pipeline.add_component(hetero_sshe_lr_0, data=Data(train_data=sample_weight_0.output.data)) pipeline.add_component(evaluation_0, data=Data(data=hetero_sshe_lr_0.output.data)) # compile pipeline once finished adding modules, this step will form conf and dsl files for running job pipeline.compile() # fit model pipeline.fit() # query component summary print( json.dumps(pipeline.get_component("evaluation_0").get_summary(), indent=4, ensure_ascii=False))