예제 #1
0
def main(config="../../config.yaml", namespace=""):
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    hosts = parties.host[0]

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }
    # guest_train_data = {"name": "default_credit_hetero_guest", "namespace": f"experiment{namespace}"}
    # host_train_data = {"name": "default_credit_hetero_host", "namespace": f"experiment{namespace}"}

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=hosts)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host', party_id=hosts).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0",
                                     output_format='dense')

    # get DataTransform party instance of guest
    data_transform_0_guest_party_instance = data_transform_0.get_party_instance(
        role='guest', party_id=guest)
    # configure DataTransform for guest
    data_transform_0_guest_party_instance.component_param(with_label=True)
    # get and configure DataTransform party instance of host
    data_transform_0.get_party_instance(
        role='host', party_id=hosts).component_param(with_label=False)

    # define Intersection components
    intersection_0 = Intersection(name="intersection_0")

    pipeline.add_component(reader_0)

    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))

    pipeline.add_component(intersection_0,
                           data=Data(data=data_transform_0.output.data))

    lr_param = {
        "name": "hetero_sshe_lr_0",
        "penalty": "L2",
        "tol": 0.0001,
        "alpha": 10,
        "max_iter": 30,
        "early_stop": "weight_diff",
        "batch_size": -1,
        "learning_rate": 0.3,
        "decay": 0.5,
        "init_param": {
            "init_method": "const",
            "init_const": 200,
            "fit_intercept": False
        },
        "encrypt_param": {
            "key_length": 1024
        }
    }

    hetero_sshe_lr_0 = HeteroSSHELR(**lr_param)
    pipeline.add_component(hetero_sshe_lr_0,
                           data=Data(train_data=intersection_0.output.data))

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary")
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_sshe_lr_0.output.data))

    pipeline.compile()

    # fit model
    pipeline.fit()
    # query component summary
    prettify(pipeline.get_component("hetero_sshe_lr_0").get_summary())
    prettify(pipeline.get_component("evaluation_0").get_summary())

    pipeline.deploy_component(
        [data_transform_0, intersection_0, hetero_sshe_lr_0])

    predict_pipeline = PipeLine()
    # add data reader onto predict pipeline
    predict_pipeline.add_component(reader_0)
    # add selected components from train pipeline onto predict pipeline
    # specify data source
    predict_pipeline.add_component(
        pipeline,
        data=Data(predict_input={
            pipeline.data_transform_0.input.data: reader_0.output.data
        }))
    # run predict model
    predict_pipeline.predict()

    return pipeline
예제 #2
0
def main(config="../../config.yaml",
         param="./vehicle_sshe_lr_config.yaml",
         namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    if isinstance(param, str):
        param = JobConfig.load_from_file(param)

    assert isinstance(param, dict)

    data_set = param.get("data_guest").split('/')[-1]
    if data_set == "vehicle_scale_hetero_guest.csv":
        guest_data_table = 'vehicle_scale_hetero_guest'
        host_data_table = 'vehicle_scale_hetero_host'
    else:
        raise ValueError(f"Cannot recognized data_set: {data_set}")

    guest_train_data = {
        "name": guest_data_table,
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": host_data_table,
        "namespace": f"experiment{namespace}"
    }

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    # define DataTransform components
    data_transform_0 = DataTransform(
        name="data_transform_0")  # start component numbering at 0

    # get DataTransform party instance of guest
    data_transform_0_guest_party_instance = data_transform_0.get_party_instance(
        role='guest', party_id=guest)
    # configure DataTransform for guest
    data_transform_0_guest_party_instance.component_param(
        with_label=True, output_format="dense")
    # get and configure DataTransform party instance of host
    data_transform_0.get_party_instance(
        role='host', party_id=host).component_param(with_label=False)

    # define Intersection component
    intersection_0 = Intersection(name="intersection_0")

    lr_param = {}

    config_param = {
        "penalty": param["penalty"],
        "max_iter": param["max_iter"],
        "alpha": param["alpha"],
        "learning_rate": param["learning_rate"],
        "optimizer": param["optimizer"],  # use sgd
        "batch_size": param["batch_size"],
        "early_stop": "diff",
        "init_param": {
            "init_method": param.get("init_method", 'random_uniform'),
            "random_seed": param.get("random_seed", 103),
            "fit_intercept": True
        },
        "reveal_strategy": param.get("reveal_strategy", "respectively"),
        "reveal_every_iter": True
    }
    lr_param.update(config_param)
    print(f"lr_param: {lr_param}, data_set: {data_set}")
    hetero_sshe_lr_0 = HeteroSSHELR(name='hetero_sshe_lr_0', **lr_param)
    hetero_sshe_lr_1 = HeteroSSHELR(name='hetero_sshe_lr_1')

    evaluation_0 = Evaluation(name='evaluation_0', eval_type="multi")

    # add components to pipeline, in order of task execution
    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(intersection_0,
                           data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_sshe_lr_0,
                           data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(hetero_sshe_lr_1,
                           data=Data(test_data=intersection_0.output.data),
                           model=Model(hetero_sshe_lr_0.output.model))
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_sshe_lr_0.output.data))

    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    pipeline.fit()
    # query component summary

    result_summary = parse_summary_result(
        pipeline.get_component("evaluation_0").get_summary())
    lr_0_data = pipeline.get_component(
        "hetero_sshe_lr_0").get_output_data().get("data")
    lr_1_data = pipeline.get_component(
        "hetero_sshe_lr_1").get_output_data().get("data")
    lr_0_score_label = extract_data(lr_0_data, "predict_result", keep_id=True)
    lr_1_score_label = extract_data(lr_1_data, "predict_result", keep_id=True)
    metric_lr = {
        "score_diversity_ratio":
        classification_metric.Distribution.compute(lr_0_score_label,
                                                   lr_1_score_label)
    }
    result_summary["distribution_metrics"] = {"hetero_lr": metric_lr}

    data_summary = {
        "train": {
            "guest": guest_train_data["name"],
            "host": host_train_data["name"]
        },
        "test": {
            "guest": guest_train_data["name"],
            "host": host_train_data["name"]
        }
    }
    print(f"result_summary: {result_summary}; data_summary: {data_summary}")
    return data_summary, result_summary
def main(config="../../config.yaml", namespace=""):
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    hosts = parties.host[0]

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=hosts)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host', party_id=hosts).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0",
                                     output_format='dense')

    # get DataTransform party instance of guest
    data_transform_0_guest_party_instance = data_transform_0.get_party_instance(
        role='guest', party_id=guest)
    # configure DataTransform for guest
    data_transform_0_guest_party_instance.component_param(with_label=True)
    # get and configure DataTransform party instance of host
    data_transform_0.get_party_instance(
        role='host', party_id=hosts).component_param(with_label=False)

    # define Intersection components
    intersection_0 = Intersection(name="intersection_0")

    selection_param = {
        "select_col_indexes": -1,
        "filter_methods": ["manually"]
    }
    hetero_feature_selection_0 = HeteroFeatureSelection(
        name="hetero_feature_selection_0", **selection_param)
    hetero_feature_selection_0.get_party_instance(
        role='guest', party_id=guest).component_param(
            manually_param={"left_col_indexes": [0]})

    pipeline.add_component(reader_0)

    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))

    pipeline.add_component(intersection_0,
                           data=Data(data=data_transform_0.output.data))
    pipeline.add_component(hetero_feature_selection_0,
                           data=Data(data=intersection_0.output.data))

    lr_param = {
        "name": "hetero_sshe_lr_0",
        "penalty": None,
        "optimizer": "sgd",
        "tol": 0.0001,
        "alpha": 0.01,
        "max_iter": 30,
        "early_stop": "diff",
        "batch_size": -1,
        "learning_rate": 0.15,
        "init_param": {
            "init_method": "random_uniform"
        },
        "reveal_strategy": "encrypted_reveal_in_host",
        "reveal_every_iter": False
    }

    hetero_sshe_lr_0 = HeteroSSHELR(**lr_param)
    pipeline.add_component(
        hetero_sshe_lr_0,
        data=Data(train_data=hetero_feature_selection_0.output.data))

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary")
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_sshe_lr_0.output.data))

    pipeline.compile()

    # fit model
    pipeline.fit()
    # query component summary
    prettify(pipeline.get_component("hetero_sshe_lr_0").get_summary())
    prettify(pipeline.get_component("evaluation_0").get_summary())
    return pipeline
예제 #4
0
def main(config="../../config.yaml", namespace=""):
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    hosts = parties.host[0]
    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }
    # guest_train_data = {"name": "default_credit_hetero_guest", "namespace": f"experiment{namespace}"}
    # host_train_data = {"name": "default_credit_hetero_host", "namespace": f"experiment{namespace}"}

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=hosts)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host', party_id=hosts).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0",
                                     output_format='dense')

    # get DataTransform party instance of guest
    data_transform_0_guest_party_instance = data_transform_0.get_party_instance(
        role='guest', party_id=guest)
    # configure DataTransform for guest
    data_transform_0_guest_party_instance.component_param(with_label=True)
    # get and configure DataTransform party instance of host
    data_transform_0.get_party_instance(
        role='host', party_id=hosts).component_param(with_label=False)

    # define Intersection components
    intersection_0 = Intersection(name="intersection_0")

    pipeline.add_component(reader_0)

    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))

    pipeline.add_component(intersection_0,
                           data=Data(data=data_transform_0.output.data))

    lr_param = {
        "penalty": "L2",
        "optimizer": "rmsprop",
        "tol": 0.0001,
        "alpha": 0.01,
        "early_stop": "diff",
        "batch_size": -1,
        "learning_rate": 0.15,
        "init_param": {
            "init_method": "zeros",
            "fit_intercept": True
        },
        "encrypt_param": {
            "key_length": 1024
        },
        "reveal_strategy": "respectively",
        "reveal_every_iter": True,
        "callback_param": {
            "callbacks": ["ModelCheckpoint"],
            "validation_freqs": 1,
            "early_stopping_rounds": 1,
            "metrics": None,
            "use_first_metric_only": False,
            "save_freq": 1
        }
    }

    hetero_sshe_lr_0 = HeteroSSHELR(name="hetero_sshe_lr_0",
                                    max_iter=3,
                                    **lr_param)
    hetero_sshe_lr_1 = HeteroSSHELR(name="hetero_sshe_lr_1",
                                    max_iter=30,
                                    **lr_param)

    pipeline.add_component(hetero_sshe_lr_0,
                           data=Data(train_data=intersection_0.output.data))
    pipeline.add_component(hetero_sshe_lr_1,
                           data=Data(train_data=intersection_0.output.data),
                           model=Model(model=hetero_sshe_lr_0.output.model))

    evaluation_0 = Evaluation(name="evaluation_0", eval_type="binary")
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_sshe_lr_1.output.data))

    pipeline.compile()

    # fit model
    pipeline.fit()
    # query component summary
    prettify(pipeline.get_component("hetero_sshe_lr_0").get_summary())
    prettify(pipeline.get_component("hetero_sshe_lr_1").get_summary())
    prettify(pipeline.get_component("evaluation_0").get_summary())
    return pipeline
예제 #5
0
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    pipeline = PipeLine().set_initiator(
        role='guest', party_id=guest).set_roles(guest=guest,
                                                host=host,
                                                arbiter=arbiter)

    reader_0 = Reader(name="reader_0")
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    reader_1 = Reader(name="reader_1")
    reader_1.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_1.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    reader_2 = Reader(name="reader_2")
    reader_2.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    reader_2.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    data_transform_0 = DataTransform(name="data_transform_0")
    data_transform_0.get_party_instance(
        role='guest', party_id=guest).component_param(with_label=True,
                                                      missing_fill=True,
                                                      outlier_replace=True)
    data_transform_0.get_party_instance(
        role='host', party_id=host).component_param(with_label=False,
                                                    missing_fill=True,
                                                    outlier_replace=True)
    data_transform_1 = DataTransform(name="data_transform_1")
    data_transform_2 = DataTransform(name="data_transform_2")

    intersection_0 = Intersection(name="intersection_0")
    intersection_1 = Intersection(name="intersection_1")
    intersection_2 = Intersection(name="intersection_2")

    union_0 = Union(name="union_0")

    federated_sample_0 = FederatedSample(name="federated_sample_0",
                                         mode="stratified",
                                         method="downsample",
                                         fractions=[[0, 1.0], [1, 1.0]])

    feature_scale_0 = FeatureScale(name="feature_scale_0")
    feature_scale_1 = FeatureScale(name="feature_scale_1")

    hetero_feature_binning_0 = HeteroFeatureBinning(
        name="hetero_feature_binning_0")
    hetero_feature_binning_1 = HeteroFeatureBinning(
        name="hetero_feature_binning_1")

    hetero_feature_selection_0 = HeteroFeatureSelection(
        name="hetero_feature_selection_0")
    hetero_feature_selection_1 = HeteroFeatureSelection(
        name="hetero_feature_selection_1")

    one_hot_0 = OneHotEncoder(name="one_hot_0")
    one_hot_1 = OneHotEncoder(name="one_hot_1")

    hetero_lr_0 = HeteroLR(name="hetero_lr_0",
                           penalty="L2",
                           optimizer="rmsprop",
                           tol=1e-5,
                           init_param={"init_method": "random_uniform"},
                           alpha=0.01,
                           max_iter=3,
                           early_stop="diff",
                           batch_size=320,
                           learning_rate=0.15)
    hetero_lr_1 = HeteroLR(name="hetero_lr_1")
    hetero_lr_2 = HeteroLR(name="hetero_lr_2",
                           penalty="L2",
                           optimizer="rmsprop",
                           tol=1e-5,
                           init_param={"init_method": "random_uniform"},
                           alpha=0.01,
                           max_iter=3,
                           early_stop="diff",
                           batch_size=320,
                           learning_rate=0.15,
                           cv_param={
                               "n_splits": 5,
                               "shuffle": True,
                               "random_seed": 103,
                               "need_cv": True
                           })

    hetero_sshe_lr_0 = HeteroSSHELR(
        name="hetero_sshe_lr_0",
        reveal_every_iter=True,
        reveal_strategy="respectively",
        penalty="L2",
        optimizer="rmsprop",
        tol=1e-5,
        batch_size=320,
        learning_rate=0.15,
        init_param={"init_method": "random_uniform"},
        alpha=0.01,
        max_iter=3)
    hetero_sshe_lr_1 = HeteroSSHELR(name="hetero_sshe_lr_1")

    local_baseline_0 = LocalBaseline(name="local_baseline_0",
                                     model_name="LogisticRegression",
                                     model_opts={
                                         "penalty": "l2",
                                         "tol": 0.0001,
                                         "C": 1.0,
                                         "fit_intercept": True,
                                         "solver": "lbfgs",
                                         "max_iter": 5,
                                         "multi_class": "ovr"
                                     })
    local_baseline_0.get_party_instance(
        role='guest', party_id=guest).component_param(need_run=True)
    local_baseline_0.get_party_instance(
        role='host', party_id=host).component_param(need_run=False)
    local_baseline_1 = LocalBaseline(name="local_baseline_1")

    hetero_secureboost_0 = HeteroSecureBoost(name="hetero_secureboost_0",
                                             num_trees=3)
    hetero_secureboost_1 = HeteroSecureBoost(name="hetero_secureboost_1")
    hetero_secureboost_2 = HeteroSecureBoost(name="hetero_secureboost_2",
                                             num_trees=3,
                                             cv_param={
                                                 "shuffle": False,
                                                 "need_cv": True
                                             })

    hetero_linr_0 = HeteroLinR(name="hetero_linr_0",
                               penalty="L2",
                               optimizer="sgd",
                               tol=0.001,
                               alpha=0.01,
                               max_iter=3,
                               early_stop="weight_diff",
                               batch_size=-1,
                               learning_rate=0.15,
                               decay=0.0,
                               decay_sqrt=False,
                               init_param={"init_method": "zeros"},
                               floating_point_precision=23)
    hetero_linr_1 = HeteroLinR(name="hetero_linr_1")

    hetero_sshe_linr_0 = HeteroSSHELinR(name="hetero_sshe_linr_0",
                                        max_iter=5,
                                        early_stop="weight_diff",
                                        batch_size=-1)
    hetero_sshe_linr_1 = HeteroSSHELinR(name="hetero_sshe_linr_1")

    hetero_poisson_0 = HeteroPoisson(name="hetero_poisson_0",
                                     early_stop="weight_diff",
                                     max_iter=10,
                                     alpha=100.0,
                                     batch_size=-1,
                                     learning_rate=0.01,
                                     optimizer="rmsprop",
                                     exposure_colname="exposure",
                                     decay_sqrt=False,
                                     tol=0.001,
                                     init_param={"init_method": "zeros"},
                                     penalty="L2")
    hetero_poisson_1 = HeteroPoisson(name="hetero_poisson_1")

    hetero_sshe_poisson_0 = HeteroSSHEPoisson(name="hetero_sshe_poisson_0",
                                              max_iter=5)
    hetero_sshe_poisson_1 = HeteroSSHEPoisson(name="hetero_sshe_poisson_1")

    evaluation_0 = Evaluation(name="evaluation_0")
    evaluation_1 = Evaluation(name="evaluation_1")
    evaluation_2 = Evaluation(name="evaluation_2")

    pipeline.add_component(reader_0)
    pipeline.add_component(reader_1)
    pipeline.add_component(reader_2)

    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(data_transform_1,
                           data=Data(data=reader_1.output.data),
                           model=Model(model=data_transform_0.output.model))
    pipeline.add_component(data_transform_2,
                           data=Data(data=reader_2.output.data),
                           model=Model(model=data_transform_0.output.model))

    pipeline.add_component(intersection_0,
                           data=Data(data=data_transform_0.output.data))
    pipeline.add_component(intersection_1,
                           data=Data(data=data_transform_1.output.data))
    pipeline.add_component(intersection_2,
                           data=Data(data=data_transform_2.output.data))

    pipeline.add_component(
        union_0,
        data=Data(
            data=[intersection_0.output.data, intersection_2.output.data]))

    pipeline.add_component(federated_sample_0,
                           data=Data(data=intersection_1.output.data))

    pipeline.add_component(feature_scale_0,
                           data=Data(data=union_0.output.data))
    pipeline.add_component(feature_scale_1,
                           data=Data(data=federated_sample_0.output.data),
                           model=Model(model=feature_scale_0.output.model))

    pipeline.add_component(hetero_feature_binning_0,
                           data=Data(data=feature_scale_0.output.data))
    pipeline.add_component(
        hetero_feature_binning_1,
        data=Data(data=feature_scale_1.output.data),
        model=Model(model=hetero_feature_binning_0.output.model))

    pipeline.add_component(
        hetero_feature_selection_0,
        data=Data(data=hetero_feature_binning_0.output.data))
    pipeline.add_component(
        hetero_feature_selection_1,
        data=Data(data=hetero_feature_binning_1.output.data),
        model=Model(model=hetero_feature_selection_0.output.model))

    pipeline.add_component(
        one_hot_0, data=Data(data=hetero_feature_selection_0.output.data))
    pipeline.add_component(
        one_hot_1,
        data=Data(data=hetero_feature_selection_1.output.data),
        model=Model(model=one_hot_0.output.model))

    pipeline.add_component(hetero_lr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_lr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_lr_0.output.model))
    pipeline.add_component(hetero_lr_2,
                           data=Data(train_data=one_hot_0.output.data))

    pipeline.add_component(local_baseline_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(local_baseline_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=local_baseline_0.output.model))

    pipeline.add_component(hetero_sshe_lr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_sshe_lr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_sshe_lr_0.output.model))

    pipeline.add_component(hetero_secureboost_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(
        hetero_secureboost_1,
        data=Data(test_data=one_hot_1.output.data),
        model=Model(model=hetero_secureboost_0.output.model))
    pipeline.add_component(hetero_secureboost_2,
                           data=Data(train_data=one_hot_0.output.data))

    pipeline.add_component(hetero_linr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_linr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_linr_0.output.model))

    pipeline.add_component(hetero_sshe_linr_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_sshe_linr_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_sshe_linr_0.output.model))

    pipeline.add_component(hetero_poisson_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(hetero_poisson_1,
                           data=Data(test_data=one_hot_1.output.data),
                           model=Model(model=hetero_poisson_0.output.model))

    pipeline.add_component(
        evaluation_0,
        data=Data(data=[
            hetero_lr_0.output.data, hetero_lr_1.output.data,
            hetero_sshe_lr_0.output.data, hetero_sshe_lr_1.output.data,
            local_baseline_0.output.data, local_baseline_1.output.data
        ]))

    pipeline.add_component(hetero_sshe_poisson_0,
                           data=Data(train_data=one_hot_0.output.data))
    pipeline.add_component(
        hetero_sshe_poisson_1,
        data=Data(test_data=one_hot_1.output.data),
        model=Model(model=hetero_sshe_poisson_0.output.model))

    pipeline.add_component(
        evaluation_1,
        data=Data(data=[
            hetero_linr_0.output.data, hetero_linr_1.output.data,
            hetero_sshe_linr_0.output.data, hetero_linr_1.output.data
        ]))
    pipeline.add_component(
        evaluation_2,
        data=Data(data=[
            hetero_poisson_0.output.data, hetero_poisson_1.output.data,
            hetero_sshe_poisson_0.output.data,
            hetero_sshe_poisson_1.output.data
        ]))

    pipeline.compile()

    pipeline.fit()

    print(pipeline.get_component("evaluation_0").get_summary())
    print(pipeline.get_component("evaluation_1").get_summary())
    print(pipeline.get_component("evaluation_2").get_summary())
def main(config="../../config.yaml", namespace=""):
    # obtain config
    if isinstance(config, str):
        config = load_job_config(config)
    parties = config.parties
    guest = parties.guest[0]
    host = parties.host[0]
    arbiter = parties.arbiter[0]

    guest_train_data = {
        "name": "breast_hetero_guest",
        "namespace": f"experiment{namespace}"
    }
    host_train_data = {
        "name": "breast_hetero_host",
        "namespace": f"experiment{namespace}"
    }

    # initialize pipeline
    pipeline = PipeLine()
    # set job initiator
    pipeline.set_initiator(role='guest', party_id=guest)
    # set participants information
    pipeline.set_roles(guest=guest, host=host, arbiter=arbiter)

    # define Reader components to read in data
    reader_0 = Reader(name="reader_0")
    # configure Reader for guest
    reader_0.get_party_instance(
        role='guest', party_id=guest).component_param(table=guest_train_data)
    # configure Reader for host
    reader_0.get_party_instance(
        role='host', party_id=host).component_param(table=host_train_data)

    # define DataTransform components
    data_transform_0 = DataTransform(
        name="data_transform_0", with_label=True,
        output_format="dense")  # start component numbering at 0
    data_transform_0.get_party_instance(
        role="host", party_id=host).component_param(with_label=False)
    intersect_0 = Intersection(name='intersect_0')

    scale_0 = FeatureScale(name='scale_0', need_run=False)
    sample_weight_0 = SampleWeight(name="sample_weight_0",
                                   class_weight={
                                       "0": 1,
                                       "1": 2
                                   })
    sample_weight_0.get_party_instance(
        role="host", party_id=host).component_param(need_run=False)

    param = {
        "penalty": None,
        "optimizer": "sgd",
        "tol": 1e-05,
        "alpha": 0.01,
        "max_iter": 3,
        "early_stop": "weight_diff",
        "batch_size": 320,
        "learning_rate": 0.15,
        "decay": 0,
        "decay_sqrt": True,
        "init_param": {
            "init_method": "ones"
        },
        "reveal_every_iter": False,
        "reveal_strategy": "respectively"
    }
    hetero_sshe_lr_0 = HeteroSSHELR(name='hetero_sshe_lr_0', **param)
    evaluation_0 = Evaluation(name='evaluation_0')
    # add components to pipeline, in order of task execution
    pipeline.add_component(reader_0)
    pipeline.add_component(data_transform_0,
                           data=Data(data=reader_0.output.data))
    pipeline.add_component(intersect_0,
                           data=Data(data=data_transform_0.output.data))
    # set data input sources of intersection components
    pipeline.add_component(scale_0, data=Data(data=intersect_0.output.data))
    pipeline.add_component(sample_weight_0,
                           data=Data(data=scale_0.output.data))

    pipeline.add_component(hetero_sshe_lr_0,
                           data=Data(train_data=sample_weight_0.output.data))
    pipeline.add_component(evaluation_0,
                           data=Data(data=hetero_sshe_lr_0.output.data))

    # compile pipeline once finished adding modules, this step will form conf and dsl files for running job
    pipeline.compile()

    # fit model
    pipeline.fit()
    # query component summary
    print(
        json.dumps(pipeline.get_component("evaluation_0").get_summary(),
                   indent=4,
                   ensure_ascii=False))