def draw_map_histogram(top_assignments, fnum=None, pnum=(1, 1, 1)): import plottool_ibeis as pt bin_labels = ut.get_list_column(top_assignments, 0) bin_vals = ut.get_list_column(top_assignments, 1) fnum = pt.ensure_fnum(fnum) # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels] pt.draw_histogram( bin_labels, bin_vals, fnum=fnum, pnum=pnum, transpose=True, use_darkbackground=False, #xtick_rotation=-10, ylabel='Prob', xlabel='assignment') pt.set_title('Assignment probabilities')
def show_model(model, evidence={}, soft_evidence={}, **kwargs): """ References: http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer Ignore: pkg-config --libs-only-L libcgraph sudo apt-get install libgraphviz-dev -y sudo apt-get install libgraphviz4 -y # sudo apt-get install pkg-config sudo apt-get install libgraphviz-dev # pip install git+git://github.com/pygraphviz/pygraphviz.git pip install pygraphviz python -c "import pygraphviz; print(pygraphviz.__file__)" sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/" python3 -c "import pygraphviz; print(pygraphviz.__file__)" """ if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'): draw_tree_model(model, **kwargs) return import plottool_ibeis as pt import networkx as netx import matplotlib as mpl fnum = pt.ensure_fnum(None) fig = pt.figure(fnum=fnum, pnum=(3, 1, (slice(0, 2), 0)), doclf=True) # NOQA #fig = pt.figure(fnum=fnum, pnum=(3, 2, (1, slice(1, 2))), doclf=True) # NOQA ax = pt.gca() var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])} netx_graph = (model) #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"' #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR' pos = get_hacked_pos(netx_graph) #netx.nx_agraph.pygraphviz_layout(netx_graph) #pos = netx.nx_agraph.pydot_layout(netx_graph, prog='dot') #pos = netx.nx_agraph.graphviz_layout(netx_graph) drawkw = dict(pos=pos, ax=ax, with_labels=True, node_size=1500) if evidence is not None: node_colors = [ # (pt.TRUE_BLUE (pt.WHITE if node not in soft_evidence else pt.LIGHT_PINK) if node not in evidence else pt.FALSE_RED for node in netx_graph.nodes()] for node in netx_graph.nodes(): cpd = model.var2_cpd[node] if cpd.ttype == 'score': pass drawkw['node_color'] = node_colors netx.draw(netx_graph, **drawkw) show_probs = True if show_probs: textprops = { 'family': 'monospace', 'horizontalalignment': 'left', #'horizontalalignment': 'center', #'size': 12, 'size': 8, } textkw = dict( xycoords='data', boxcoords='offset points', pad=0.25, framewidth=True, arrowprops=dict(arrowstyle='->'), #bboxprops=dict(fc=node_attr['fillcolor']), ) netx_nodes = model.nodes(data=True) node_key_list = ut.get_list_column(netx_nodes, 0) pos_list = ut.dict_take(pos, node_key_list) artist_list = [] offset_box_list = [] for pos_, node in zip(pos_list, netx_nodes): x, y = pos_ variable = node[0] cpd = model.var2_cpd[variable] prior_marg = (cpd if cpd.evidence is None else cpd.marginalize(cpd.evidence, inplace=False)) prior_text = None text = None if variable in evidence: text = cpd.variable_statenames[evidence[variable]] elif variable in var2_post: post_marg = var2_post[variable] text = pgm_ext.make_factor_text(post_marg, 'post') prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') else: if len(evidence) == 0 and len(soft_evidence) == 0: prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') show_post = kwargs.get('show_post', False) show_prior = kwargs.get('show_prior', False) show_prior = True show_post = True show_ev = (evidence is not None and variable in evidence) if (show_post or show_ev) and text is not None: offset_box = mpl.offsetbox.TextArea(text, textprops) artist = mpl.offsetbox.AnnotationBbox( # offset_box, (x + 5, y), xybox=(20., 5.), offset_box, (x, y + 5), xybox=(4., 20.), #box_alignment=(0, 0), box_alignment=(.5, 0), **textkw) offset_box_list.append(offset_box) artist_list.append(artist) if show_prior and prior_text is not None: offset_box2 = mpl.offsetbox.TextArea(prior_text, textprops) artist2 = mpl.offsetbox.AnnotationBbox( # offset_box2, (x - 5, y), xybox=(-20., -15.), # offset_box2, (x, y - 5), xybox=(-15., -20.), offset_box2, (x, y - 5), xybox=(-4, -20.), #box_alignment=(1, 1), box_alignment=(.5, 1), **textkw) offset_box_list.append(offset_box2) artist_list.append(artist2) for artist in artist_list: ax.add_artist(artist) xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) num_annots = len(model.ttype2_cpds['name']) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) fig = pt.gcf() title = 'num_names=%r, num_annots=%r' % (model.num_names, num_annots,) map_assign = kwargs.get('map_assign', None) #max_marginal_list = [] #for name, marginal in marginalized_joints.items(): # states = list(ut.iprod(*marginal.statenames)) # vals = marginal.values.ravel() # x = vals.argmax() # max_marginal_list += ['P(' + ', '.join(states[x]) + ') = ' + str(vals[x])] # title += str(marginal) top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: # title += '\nMAP=' + ut.repr2(map_assign, strvals=True) title += '\nMAP: ' + map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) #pt.set_xlabel() def hack_fix_centeralign(): if textprops['horizontalalignment'] == 'center': print('Fixing centeralign') fig = pt.gcf() fig.canvas.draw() # Superhack for centered text. Fix bug in # /usr/local/lib/python2.7/dist-packages/matplotlib/offsetbox.py # /usr/local/lib/python2.7/dist-packages/matplotlib/text.py for offset_box in offset_box_list: offset_box.set_offset z = offset_box._text.get_window_extent() (z.x1 - z.x0) / 2 offset_box._text T = offset_box._text.get_transform() A = mpl.transforms.Affine2D() A.clear() A.translate((z.x1 - z.x0) / 2, 0) offset_box._text.set_transform(T + A) hack_fix_centeralign() top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: bin_labels = ut.get_list_column(top_assignments, 0) bin_vals = ut.get_list_column(top_assignments, 1) # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels] pt.draw_histogram(bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))), transpose=True, use_darkbackground=False, #xtick_rotation=-10, ylabel='Prob', xlabel='assignment') pt.set_title('Assignment probabilities')
def show_chip(ibs, aid, in_image=False, annote=True, title_suffix='', weight_label=None, weights=None, config2_=None, **kwargs): r""" Driver function to show chips Args: ibs (ibeis.IBEISController): aid (int): annotation rowid in_image (bool): displays annotation with the context of its source image annote (bool): enables overlay annoations title_suffix (str): weight_label (None): (default = None) weights (None): (default = None) config2_ (dict): (default = None) Kwargs: enable_chip_title_prefix, nokpts, kpts_subset, kpts, text_color, notitle, draw_lbls, show_aidstr, show_gname, show_name, show_nid, show_exemplar, show_num_gt, show_quality_text, show_viewcode, fnum, title, figtitle, pnum, interpolation, cmap, heatmap, data_colorbar, darken, update, xlabel, redraw_image, ax, alpha, docla, doclf, projection, pts, ell color (3/4-tuple, ndarray, or str): colors for keypoints CommandLine: python -m ibeis.viz.viz_chip show_chip --show --ecc python -c "import utool as ut; ut.print_auto_docstr('ibeis.viz.viz_chip', 'show_chip')" python -m ibeis.viz.viz_chip show_chip --show --db NNP_Master3 --aids 14047 --no-annote python -m ibeis.viz.viz_chip show_chip --show --db NNP_Master3 --aids 14047 --no-annote python -m ibeis.viz.viz_chip show_chip --show --db PZ_MTEST --aid 1 --bgmethod=cnn python -m ibeis.viz.viz_chip show_chip --show --db PZ_MTEST --aid 1 --bgmethod=cnn --scale_max=30 python -m ibeis.viz.viz_chip show_chip --show --db PZ_MTEST --aid 1 --ecc --draw_lbls=False --notitle --save=~/slides/lnbnn_query.jpg --dpi=300 Example: >>> # VIZ_TEST >>> from ibeis.viz.viz_chip import * # NOQA >>> import numpy as np >>> import vtool_ibeis as vt >>> in_image = False >>> ibs, aid_list, kwargs, config2_ = testdata_showchip() >>> aid = aid_list[0] >>> if True: >>> import matplotlib as mpl >>> from ibeis.scripts.thesis import TMP_RC >>> mpl.rcParams.update(TMP_RC) >>> if ut.get_argflag('--ecc'): >>> kpts = ibs.get_annot_kpts(aid, config2_=config2_) >>> weights = ibs.get_annot_fgweights([aid], ensure=True, config2_=config2_)[0] >>> kpts = ut.random_sample(kpts[weights > .9], 200, seed=0) >>> ecc = vt.get_kpts_eccentricity(kpts) >>> scale = 1 / vt.get_scales(kpts) >>> #s = ecc if config2_.affine_invariance else scale >>> s = scale >>> colors = pt.scores_to_color(s, cmap_='jet') >>> kwargs['color'] = colors >>> kwargs['kpts'] = kpts >>> kwargs['ell_linewidth'] = 3 >>> kwargs['ell_alpha'] = .7 >>> show_chip(ibs, aid, in_image=in_image, config2_=config2_, **kwargs) >>> pt.show_if_requested() """ if ut.VERBOSE: print('[viz] show_chip(aid=%r)' % (aid, )) #ibs.assert_valid_aids((aid,)) # Get chip #print('in_image = %r' % (in_image,)) chip = vh.get_chips(ibs, aid, in_image=in_image, config2_=config2_) # Create chip title chip_text = vh.get_annot_texts(ibs, [aid], **kwargs)[0] if kwargs.get('enable_chip_title_prefix', True): chip_title_text = chip_text + title_suffix else: chip_title_text = title_suffix chip_title_text = chip_title_text.strip('\n') # Draw chip fig, ax = pt.imshow(chip, **kwargs) # Populate axis user data vh.set_ibsdat(ax, 'viztype', 'chip') vh.set_ibsdat(ax, 'aid', aid) if annote and not kwargs.get('nokpts', False): # Get and draw keypoints if 'color' not in kwargs: if weight_label == 'fg_weights': if weights is None and ibs.has_species_detector( ibs.get_annot_species_texts(aid)): weight_label = 'fg_weights' weights = ibs.get_annot_fgweights([aid], ensure=True, config2_=config2_)[0] if weights is not None: cmap_ = 'hot' #if weight_label == 'dstncvs': # cmap_ = 'rainbow' color = pt.scores_to_color(weights, cmap_=cmap_, reverse_cmap=False) kwargs['color'] = color kwargs['ell_color'] = color kwargs['pts_color'] = color kpts_ = vh.get_kpts(ibs, aid, in_image, config2_=config2_, kpts_subset=kwargs.get('kpts_subset', None), kpts=kwargs.pop('kpts', None)) pt.viz_keypoints._annotate_kpts(kpts_, **kwargs) if kwargs.get('draw_lbls', True): pt.upperleft_text(chip_text, color=kwargs.get('text_color', None)) use_title = not kwargs.get('notitle', False) if use_title: pt.set_title(chip_title_text) if in_image: gid = ibs.get_annot_gids(aid) aid_list = ibs.get_image_aids(gid) annotekw = viz_image.get_annot_annotations(ibs, aid_list, sel_aids=[aid], draw_lbls=kwargs.get( 'draw_lbls', True)) # Put annotation centers in the axis ph.set_plotdat(ax, 'annotation_bbox_list', annotekw['bbox_list']) ph.set_plotdat(ax, 'aid_list', aid_list) pt.viz_image2.draw_image_overlay(ax, **annotekw) zoom_ = ut.get_argval('--zoom', type_=float, default=None) if zoom_ is not None: import vtool_ibeis as vt # Zoom into the chip for some image context rotated_verts = ibs.get_annot_rotated_verts(aid) bbox = ibs.get_annot_bboxes(aid) #print(bbox) #print(rotated_verts) rotated_bbox = vt.bbox_from_verts(rotated_verts) imgw, imgh = ibs.get_image_sizes(gid) pad_factor = zoom_ pad_length = min(bbox[2], bbox[3]) * pad_factor minx = max(rotated_bbox[0] - pad_length, 0) miny = max(rotated_bbox[1] - pad_length, 0) maxx = min((rotated_bbox[0] + rotated_bbox[2]) + pad_length, imgw) maxy = min((rotated_bbox[1] + rotated_bbox[3]) + pad_length, imgh) #maxy = imgh - maxy #miny = imgh - miny ax = pt.gca() ax.set_xlim(minx, maxx) ax.set_ylim(miny, maxy) ax.invert_yaxis() else: ph.set_plotdat(ax, 'chipshape', chip.shape) #if 'featweights' in vars() and 'color' in kwargs: if weights is not None and weight_label is not None: ## HACK HACK HACK if len(weights) > 0: cb = pt.colorbar(weights, kwargs['color']) cb.set_label(weight_label) return fig, ax
def do_infr_test(ccs, edges, new_edges): """ Creates a graph with `ccs` + `edges` and then adds `new_edges` """ # import networkx as nx import plottool_ibeis as pt infr = demo.make_demo_infr(ccs, edges) if ut.show_was_requested(): pt.qtensure() # Preshow fnum = 1 if ut.show_was_requested(): infr.set_node_attrs('shape', 'circle') infr.show(pnum=(2, 1, 1), fnum=fnum, show_unreviewed_edges=True, show_reviewed_cuts=True, splines='spline', show_inferred_diff=True, groupby='name_label', show_labels=True, pickable=True) pt.set_title('pre-review') pt.gca().set_aspect('equal') infr.set_node_attrs('pin', 'true') # fig1 = pt.gcf() # fig1.canvas.mpl_connect('pick_event', ut.partial(on_pick, infr=infr)) infr1 = infr infr2 = infr.copy() for new_edge in new_edges: aid1, aid2, data = new_edge evidence_decision = data['evidence_decision'] infr2.add_feedback((aid1, aid2), evidence_decision) infr2.relabel_using_reviews(rectify=False) infr2.apply_nondynamic_update() # Postshow if ut.show_was_requested(): infr2.show(pnum=(2, 1, 2), fnum=fnum, show_unreviewed_edges=True, show_inferred_diff=True, show_labels=True) pt.gca().set_aspect('equal') pt.set_title('post-review') # fig2 = pt.gcf() # if fig2 is not fig1: # fig2.canvas.mpl_connect('pick_event', ut.partial(on_pick, infr=infr2)) class Checker(object): """ Asserts pre and post test properties of the graph """ def __init__(self, infr1, infr2): self._errors = [] self.infr1 = infr1 self.infr2 = infr2 def __call__(self, infr, u, v, key, val, msg): data = infr.get_nonvisual_edge_data((u, v)) if data is None: assert infr.graph.has_edge(u, v), ( 'uv=%r, %r does not exist' % (u, v)) got = data.get(key) if got != val: msg1 = 'key=%s %r!=%r, ' % (key, got, val) errmsg = ''.join([msg1, msg, '\nedge=', ut.repr2((u, v)), '\n', infr.repr_edge_data(data)]) self._errors.append(errmsg) def custom_precheck(self, func): try: func(self.infr1) except AssertionError as ex: self._errors.append(str(ex)) def after(self, errors=[]): """ Delays error reporting until after visualization prints errors, then shows you the graph, then finally if any errors were discovered they are raised """ errors = errors + self._errors if errors: ut.cprint('PRINTING %d FAILURE' % (len(errors)), 'red') for msg in errors: print(msg) ut.cprint('HAD %d FAILURE' % (len(errors)), 'red') if ut.show_was_requested(): pt.all_figures_tile(percent_w=.5) ut.show_if_requested() if errors: raise AssertionError('There were errors') check = Checker(infr1, infr2) return infr1, infr2, check
def annotate_matches2( ibs, aid1, aid2, fm, fs, offset1=(0, 0), offset2=(0, 0), xywh2=None, # (0, 0, 0, 0), xywh1=None, # (0, 0, 0, 0), qreq_=None, **kwargs): """ TODO: use this as the main function. """ if True: aid_list = [aid1, aid2] bbox_list = [xywh1, xywh2] offset_list = [offset1, offset2] name_fm_list = [fm] name_fs_list = [fs] return annotate_matches3(ibs, aid_list, bbox_list, offset_list, name_fm_list, name_fs_list, qreq_=qreq_, **kwargs) else: # TODO: make sure all of this functionality is incorporated into annotate_matches3 in_image = kwargs.get('in_image', False) show_query = kwargs.get('show_query', True) draw_border = kwargs.get('draw_border', True) draw_lbl = kwargs.get('draw_lbl', True) notitle = kwargs.get('notitle', False) truth = ibs.get_match_truth(aid1, aid2) truth_color = vh.get_truth_color(truth) # Build title title = vh.get_query_text(ibs, None, aid2, truth, qaid=aid1, **kwargs) # Build xlbl ax = pt.gca() ph.set_plotdat(ax, 'viztype', 'matches') ph.set_plotdat(ax, 'qaid', aid1) ph.set_plotdat(ax, 'aid1', aid1) ph.set_plotdat(ax, 'aid2', aid2) if draw_lbl: name1, name2 = ibs.get_annot_names([aid1, aid2]) nid1, nid2 = ibs.get_annot_name_rowids([aid1, aid2], distinguish_unknowns=False) #lbl1 = repr(name1) + ' : ' + 'q' + vh.get_aidstrs(aid1) #lbl2 = repr(name2) + ' : ' + vh.get_aidstrs(aid2) lbl1_list = [] lbl2_list = [] if kwargs.get('show_aid', True): lbl1_list.append('q' + vh.get_aidstrs(aid1)) lbl2_list.append(vh.get_aidstrs(aid2)) if kwargs.get('show_name', True): lbl1_list.append(repr((name1))) lbl2_list.append(repr((name2))) if kwargs.get('show_nid', True): lbl1_list.append(vh.get_nidstrs(nid1)) lbl2_list.append(vh.get_nidstrs(nid2)) lbl1 = ' : '.join(lbl1_list) lbl2 = ' : '.join(lbl2_list) else: lbl1, lbl2 = None, None if vh.NO_LBL_OVERRIDE: title = '' if not notitle: pt.set_title(title, ax) # Plot annotations over images if in_image: bbox1, bbox2 = vh.get_bboxes(ibs, [aid1, aid2], [offset1, offset2]) theta1, theta2 = ibs.get_annot_thetas([aid1, aid2]) # HACK! if show_query: pt.draw_bbox(bbox1, bbox_color=pt.ORANGE, lbl=lbl1, theta=theta1) bbox_color2 = truth_color if draw_border else pt.ORANGE pt.draw_bbox(bbox2, bbox_color=bbox_color2, lbl=lbl2, theta=theta2) else: xy, w, h = pt.get_axis_xy_width_height(ax) bbox2 = (xy[0], xy[1], w, h) theta2 = 0 if xywh2 is None: #xywh2 = (xy[0], xy[1], w, h) # weird when sidebyside is off y seems to be inverted xywh2 = (0, 0, w, h) if not show_query and xywh1 is None: data_config2 = (None if qreq_ is None else qreq_.extern_data_config2) # FIXME, pass data in kpts2 = ibs.get_annot_kpts([aid2], config2_=data_config2)[0] #pt.draw_kpts2(kpts2.take(fm.T[1], axis=0)) # Draw any selected matches #sm_kw = dict(rect=True, colors=pt.BLUE) pt.plot_fmatch(None, xywh2, None, kpts2, fm, fs=fs, **kwargs) if draw_border: pt.draw_border(ax, truth_color, 4, offset=offset2) if draw_lbl: # Custom user lbl for chips 1 and 2 if show_query: (x1, y1, w1, h1) = xywh1 pt.absolute_lbl(x1 + w1, y1, lbl1) (x2, y2, w2, h2) = xywh2 pt.absolute_lbl(x2 + w2, y2, lbl2) if True: # No matches draw a red box if fm is None or len(fm) == 0: if draw_border: pass
def annotate_matches3(ibs, aid_list, bbox_list, offset_list, name_fm_list, name_fs_list, qreq_=None, **kwargs): """ TODO: use this as the main function. """ # TODO Use this function when you clean show_matches in_image = kwargs.get('in_image', False) #show_query = kwargs.get('show_query', True) draw_border = kwargs.get('draw_border', True) draw_lbl = kwargs.get('draw_lbl', True) notitle = kwargs.get('notitle', False) # List of annotation scores for each annot in the name #printDBG('[viz] annotate_matches3()') #truth = ibs.get_match_truth(aid1, aid2) #name_equality = ( # np.array(ibs.get_annot_nids(aid_list[1:])) == ibs.get_annot_nids(aid_list[0]) #).tolist() #truth = 1 if all(name_equality) else (2 if any(name_equality) else 0) #truth_color = vh.get_truth_color(truth) ## Build title #score = kwargs.pop('score', None) #rawscore = kwargs.pop('rawscore', None) #aid2_raw_rank = kwargs.pop('aid2_raw_rank', None) #print(kwargs) #title = vh.get_query_text(ibs, None, aid2, truth, qaid=aid1, **kwargs) # Build xlbl ax = pt.gca() ph.set_plotdat(ax, 'viztype', 'multi_match') ph.set_plotdat(ax, 'qaid', aid_list[0]) ph.set_plotdat(ax, 'num_matches', len(aid_list) - 1) ph.set_plotdat(ax, 'aid_list', aid_list[1:]) for count, aid in enumerate(aid_list, start=1): ph.set_plotdat(ax, 'aid%d' % (count, ), aid) #name_equality = (ibs.get_annot_nids(aid_list[0]) == # np.array(ibs.get_annot_nids(aid_list[1:]))) #truth = 1 if np.all(name_equality) else (2 if np.any(name_equality) else 0) truth = get_multitruth(ibs, aid_list) if any(ibs.is_aid_unknown(aid_list[1:])) or ibs.is_aid_unknown( aid_list[0]): truth = ibs.const.EVIDENCE_DECISION.UNKNOWN truth_color = vh.get_truth_color(truth) name_annot_scores = kwargs.get('name_annot_scores', None) if len(aid_list) == 2: # HACK; generalize to multple annots title = vh.get_query_text(ibs, None, aid_list[1], truth, qaid=aid_list[0], **kwargs) if not notitle: pt.set_title(title, ax) if draw_lbl: # Build labels nid_list = ibs.get_annot_nids(aid_list, distinguish_unknowns=False) name_list = ibs.get_annot_names(aid_list) lbls_list = [[] for _ in range(len(aid_list))] if kwargs.get('show_name', False): for count, (lbls, name) in enumerate(zip(lbls_list, name_list)): lbls.append(ut.repr2((name))) if kwargs.get('show_nid', True): for count, (lbls, nid) in enumerate(zip(lbls_list, nid_list)): # only label the first two images with nids LABEL_ALL_NIDS = False if count <= 1 or LABEL_ALL_NIDS: #lbls.append(vh.get_nidstrs(nid)) lbls.append(('q' if count == 0 else '') + vh.get_nidstrs(nid)) if kwargs.get('show_aid', True): for count, (lbls, aid) in enumerate(zip(lbls_list, aid_list)): lbls.append(('q' if count == 0 else '') + vh.get_aidstrs(aid)) if (kwargs.get('show_annot_score', True) and name_annot_scores is not None): max_digits = kwargs.get('score_precision', None) for (lbls, score) in zip(lbls_list[1:], name_annot_scores): lbls.append(ut.num_fmt(score, max_digits=max_digits)) lbl_list = [' : '.join(lbls) for lbls in lbls_list] else: lbl_list = [None] * len(aid_list) # Plot annotations over images if in_image: in_image_bbox_list = vh.get_bboxes(ibs, aid_list, offset_list) in_image_theta_list = ibs.get_annot_thetas(aid_list) # HACK! #if show_query: # pt.draw_bbox(bbox1, bbox_color=pt.ORANGE, lbl=lbl1, theta=theta1) bbox_color = pt.ORANGE bbox_color = truth_color if draw_border else pt.ORANGE for bbox, theta, lbl in zip(in_image_bbox_list, in_image_theta_list, lbl_list): pt.draw_bbox(bbox, bbox_color=bbox_color, lbl=lbl, theta=theta) pass else: xy, w, h = pt.get_axis_xy_width_height(ax) if draw_border: pt.draw_border(ax, color=truth_color, lw=4) if draw_lbl: # Custom user lbl for chips 1 and 2 for bbox, lbl in zip(bbox_list, lbl_list): (x, y, w, h) = bbox pt.absolute_lbl(x + w, y, lbl) # No matches draw a red box if True: no_matches = (name_fm_list is None or all( [True if fm is None else len(fm) == 0 for fm in name_fm_list])) if no_matches: xy, w, h = pt.get_axis_xy_width_height(ax) #axes_bbox = (xy[0], xy[1], w, h) if draw_border: pass
def show_name_matches(ibs, qaid, name_daid_list, name_fm_list, name_fs_list, name_H1_list, name_featflag_list, qreq_=None, **kwargs): """ Called from chip_match.py Args: ibs (IBEISController): ibeis controller object qaid (int): query annotation id name_daid_list (list): name_fm_list (list): name_fs_list (list): name_H1_list (list): name_featflag_list (list): qreq_ (QueryRequest): query request object with hyper-parameters(default = None) Kwargs: draw_fmatches, name_rank, fnum, pnum, colorbar_, nonvote_mode, fastmode, show_matches, fs, fm_norm, lbl1, lbl2, rect, draw_border, cmap, H1, H2, scale_factor1, scale_factor2, draw_pts, draw_ell, draw_lines, show_nMatches, all_kpts, in_image, show_query, draw_lbl, name_annot_scores, score, rawscore, aid2_raw_rank, show_name, show_nid, show_aid, show_annot_score, show_truth, name_score, show_name_score, show_name_rank, show_timedelta CommandLine: python -m ibeis.viz.viz_matches --exec-show_name_matches python -m ibeis.viz.viz_matches --test-show_name_matches --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.viz.viz_matches import * # NOQA >>> from ibeis.algo.hots import chip_match >>> from ibeis.algo.hots import name_scoring >>> import vtool_ibeis as vt >>> from ibeis.algo.hots import _pipeline_helpers as plh # NOQA >>> import numpy as np >>> func = chip_match.ChipMatch.show_single_namematch >>> sourcecode = ut.get_func_sourcecode(func, stripdef=True, stripret=True, >>> strip_docstr=True) >>> setup = ut.regex_replace('viz_matches.show_name_matches', '#', sourcecode) >>> homog = False >>> print(ut.indent(setup, '>>> ')) >>> ibs, qreq_, cm_list = plh.testdata_post_sver('PZ_MTEST', qaid_list=[1]) >>> cm = cm_list[0] >>> cm.score_name_nsum(qreq_) >>> dnid = ibs.get_annot_nids(cm.qaid) >>> # +--- COPIED SECTION >>> locals_ = locals() >>> var_list = ut.exec_func_src( >>> func, locals_=locals_, >>> sentinal='name_annot_scores = cm.annot_score_list.take(sorted_groupxs') >>> exec(ut.execstr_dict(var_list)) >>> # L___ COPIED SECTION >>> kwargs = {} >>> show_name_matches(ibs, qaid, name_daid_list, name_fm_list, >>> name_fs_list, name_h1_list, name_featflag_list, >>> qreq_=qreq_, **kwargs) >>> ut.quit_if_noshow() >>> ut.show_if_requested() """ #print("SHOW NAME MATCHES") #print(ut.repr2(kwargs, nl=True)) #from ibeis import constants as const from ibeis import tag_funcs draw_fmatches = kwargs.pop('draw_fmatches', True) rchip1, kpts1 = get_query_annot_pair_info(ibs, qaid, qreq_, draw_fmatches) rchip2_list, kpts2_list = get_data_annot_pair_info(ibs, name_daid_list, qreq_, draw_fmatches) heatmask = kwargs.pop('heatmask', False) if heatmask: from vtool_ibeis.coverage_kpts import make_kpts_heatmask import numpy as np import vtool_ibeis as vt wh1 = vt.get_size(rchip1) fx1 = np.unique(np.hstack([fm.T[0] for fm in name_fm_list])) heatmask1 = make_kpts_heatmask(kpts1[fx1], wh1) rchip1 = vt.overlay_alpha_images(heatmask1, rchip1) # Hack cast back to uint8 rchip1 = (rchip1 * 255).astype(np.uint8) rchip2_list_ = rchip2_list rchip2_list = [] for rchip2, kpts2, fm in zip(rchip2_list_, kpts2_list, name_fm_list): fx2 = fm.T[1] wh2 = vt.get_size(rchip2) heatmask2 = make_kpts_heatmask(kpts2[fx2], wh2) rchip2 = vt.overlay_alpha_images(heatmask2, rchip2) # Hack cast back to uint8 rchip2 = (rchip2 * 255).astype(np.uint8) rchip2_list.append(rchip2) # fm_list = name_fm_list fs_list = name_fs_list featflag_list = name_featflag_list offset_list, sf_list, bbox_list = show_multichip_match( rchip1, rchip2_list, kpts1, kpts2_list, fm_list, fs_list, featflag_list, **kwargs) aid_list = [qaid] + name_daid_list annotate_matches3(ibs, aid_list, bbox_list, offset_list, name_fm_list, name_fs_list, qreq_=None, **kwargs) ax = pt.gca() title = vh.get_query_text(ibs, None, name_daid_list, False, qaid=qaid, **kwargs) pt.set_title(title, ax) # Case tags annotmatch_rowid_list = ibs.get_annotmatch_rowid_from_superkey( [qaid] * len(name_daid_list), name_daid_list) annotmatch_rowid_list = ut.filter_Nones(annotmatch_rowid_list) tags_list = ibs.get_annotmatch_case_tags(annotmatch_rowid_list) if not ut.get_argflag('--show'): # False: tags_list = tag_funcs.consolodate_annotmatch_tags(tags_list) tag_list = ut.unique_ordered(ut.flatten(tags_list)) name_rank = kwargs.get('name_rank', None) truth = get_multitruth(ibs, aid_list) xlabel = {1: 'Correct ID', 0: 'Incorrect ID', 2: 'Unknown ID'}[truth] if False: if name_rank is None: xlabel = {1: 'Genuine', 0: 'Imposter', 2: 'Unknown'}[truth] #xlabel = {1: 'True', 0: 'False', 2: 'Unknown'}[truth] else: if name_rank == 0: xlabel = { 1: 'True Positive', 0: 'False Positive', 2: 'Unknown' }[truth] else: xlabel = { 1: 'False Negative', 0: 'True Negative', 2: 'Unknown' }[truth] if len(tag_list) > 0: xlabel += '\n' + ', '.join(tag_list) noshow_truth = ut.get_argflag('--noshow_truth') if not noshow_truth: pt.set_xlabel(xlabel) return ax
def show_model(model, evidence={}, soft_evidence={}, **kwargs): """ References: http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer Ignore: pkg-config --libs-only-L libcgraph sudo apt-get install libgraphviz-dev -y sudo apt-get install libgraphviz4 -y # sudo apt-get install pkg-config sudo apt-get install libgraphviz-dev # pip install git+git://github.com/pygraphviz/pygraphviz.git pip install pygraphviz python -c "import pygraphviz; print(pygraphviz.__file__)" sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/" python3 -c "import pygraphviz; print(pygraphviz.__file__)" CommandLine: python -m ibeis.algo.hots.bayes --exec-show_model --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.hots.bayes import * # NOQA >>> model = '?' >>> evidence = {} >>> soft_evidence = {} >>> result = show_model(model, evidence, soft_evidence) >>> print(result) >>> ut.quit_if_noshow() >>> import plottool_ibeis as pt >>> ut.show_if_requested() """ if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'): draw_tree_model(model, **kwargs) return import plottool_ibeis as pt import networkx as netx fnum = pt.ensure_fnum(None) netx_graph = (model) #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"' #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR' pos_dict = get_hacked_pos(netx_graph) #pos_dict = netx.nx_agraph.pygraphviz_layout(netx_graph) #pos = netx.nx_agraph.nx_pydot.pydot_layout(netx_graph, prog='dot') #pos_dict = netx.nx_agraph.graphviz_layout(netx_graph) textprops = { 'family': 'monospace', 'horizontalalignment': 'left', #'horizontalalignment': 'center', #'size': 12, 'size': 8, } netx_nodes = model.nodes(data=True) node_key_list = ut.get_list_column(netx_nodes, 0) pos_list = ut.dict_take(pos_dict, node_key_list) var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])} prior_text = None post_text = None evidence_tas = [] post_tas = [] prior_tas = [] node_color = [] has_inferred = evidence or var2_post if has_inferred: ignore_prior_with_ttype = [SCORE_TTYPE, MATCH_TTYPE] show_prior = False else: ignore_prior_with_ttype = [] #show_prior = True show_prior = False dpy = 5 dbx, dby = (20, 20) takw1 = {'bbox_align': (.5, 0), 'pos_offset': [0, dpy], 'bbox_offset': [dbx, dby]} takw2 = {'bbox_align': (.5, 1), 'pos_offset': [0, -dpy], 'bbox_offset': [-dbx, -dby]} name_colors = pt.distinct_colors(max(model.num_names, 10)) name_colors = name_colors[:model.num_names] #cmap_ = 'hot' #mx = 0.65 #mn = 0.15 cmap_, mn, mx = 'plasma', 0.15, 1.0 _cmap = pt.plt.get_cmap(cmap_) def cmap(x): return _cmap((x * mx) + mn) for node, pos in zip(netx_nodes, pos_list): variable = node[0] cpd = model.var2_cpd[variable] prior_marg = (cpd if cpd.evidence is None else cpd.marginalize(cpd.evidence, inplace=False)) show_evidence = variable in evidence show_prior = cpd.ttype not in ignore_prior_with_ttype show_post = variable in var2_post show_prior |= cpd.ttype not in ignore_prior_with_ttype post_marg = None if show_post: post_marg = var2_post[variable] def get_name_color(phi): order = phi.values.argsort()[::-1] if len(order) < 2: dist_next = phi.values[order[0]] else: dist_next = phi.values[order[0]] - phi.values[order[1]] dist_total = (phi.values[order[0]]) confidence = (dist_total * dist_next) ** (2.5 / 4) #print('confidence = %r' % (confidence,)) color = name_colors[order[0]] color = pt.color_funcs.desaturate_rgb(color, 1 - confidence) color = np.array(color) return color if variable in evidence: if cpd.ttype == SCORE_TTYPE: cmap_index = evidence[variable] / (cpd.variable_card - 1) color = cmap(cmap_index) color = pt.lighten_rgb(color, .4) color = np.array(color) node_color.append(color) elif cpd.ttype == NAME_TTYPE: color = name_colors[evidence[variable]] color = np.array(color) node_color.append(color) else: color = pt.FALSE_RED node_color.append(color) #elif variable in soft_evidence: # color = pt.LIGHT_PINK # show_prior = True # color = get_name_color(prior_marg) # node_color.append(color) else: if cpd.ttype == NAME_TTYPE and post_marg is not None: color = get_name_color(post_marg) node_color.append(color) elif cpd.ttype == MATCH_TTYPE and post_marg is not None: color = cmap(post_marg.values[1]) color = pt.lighten_rgb(color, .4) color = np.array(color) node_color.append(color) else: #color = pt.WHITE color = pt.NEUTRAL node_color.append(color) if show_prior: if variable in soft_evidence: prior_color = pt.LIGHT_PINK else: prior_color = None prior_text = pgm_ext.make_factor_text(prior_marg, 'prior') prior_tas.append(dict(text=prior_text, pos=pos, color=prior_color, **takw2)) if show_evidence: _takw1 = takw1 if cpd.ttype == SCORE_TTYPE: _takw1 = takw2 evidence_text = cpd.variable_statenames[evidence[variable]] if isinstance(evidence_text, int): evidence_text = '%d/%d' % (evidence_text + 1, cpd.variable_card) evidence_tas.append(dict(text=evidence_text, pos=pos, color=color, **_takw1)) if show_post: _takw1 = takw1 if cpd.ttype == MATCH_TTYPE: _takw1 = takw2 post_text = pgm_ext.make_factor_text(post_marg, 'post') post_tas.append(dict(text=post_text, pos=pos, color=None, **_takw1)) def trnps_(dict_list): """ tranpose dict list """ list_dict = ut.ddict(list) for dict_ in dict_list: for key, val in dict_.items(): list_dict[key + '_list'].append(val) return list_dict takw1_ = trnps_(post_tas + evidence_tas) takw2_ = trnps_(prior_tas) # Draw graph if has_inferred: pnum1 = (3, 1, (slice(0, 2), 0)) else: pnum1 = None fig = pt.figure(fnum=fnum, pnum=pnum1, doclf=True) # NOQA ax = pt.gca() #print('node_color = %s' % (ut.repr3(node_color),)) drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1500, node_color=node_color) netx.draw(netx_graph, **drawkw) hacks = [] if len(post_tas + evidence_tas): hacks.append(pt.draw_text_annotations(textprops=textprops, **takw1_)) if prior_tas: hacks.append(pt.draw_text_annotations(textprops=textprops, **takw2_)) xmin, ymin = np.array(pos_list).min(axis=0) xmax, ymax = np.array(pos_list).max(axis=0) num_annots = len(model.ttype2_cpds[NAME_TTYPE]) if num_annots > 4: ax.set_xlim((xmin - 40, xmax + 40)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(30, 7) else: ax.set_xlim((xmin - 42, xmax + 42)) ax.set_ylim((ymin - 50, ymax + 50)) fig.set_size_inches(23, 7) fig = pt.gcf() title = 'num_names=%r, num_annots=%r' % (model.num_names, num_annots,) map_assign = kwargs.get('map_assign', None) top_assignments = kwargs.get('top_assignments', None) if top_assignments is not None: map_assign, map_prob = top_assignments[0] if map_assign is not None: def word_insert(text): return '' if len(text) == 0 else text + ' ' title += '\n%sMAP: ' % (word_insert(kwargs.get('method', ''))) title += map_assign + ' @' + '%.2f%%' % (100 * map_prob,) if kwargs.get('show_title', True): pt.set_figtitle(title, size=14) for hack in hacks: hack() # Hack in colorbars if has_inferred: pt.colorbar(np.linspace(0, 1, len(name_colors)), name_colors, lbl=NAME_TTYPE, ticklabels=model.ttype2_template[NAME_TTYPE].basis, ticklocation='left') basis = model.ttype2_template[SCORE_TTYPE].basis scalars = np.linspace(0, 1, len(basis)) scalars = np.linspace(0, 1, 100) colors = pt.scores_to_color(scalars, cmap_=cmap_, reverse_cmap=False, cmap_range=(mn, mx)) colors = [pt.lighten_rgb(c, .4) for c in colors] if ut.list_type(basis) is int: pt.colorbar(scalars, colors, lbl=SCORE_TTYPE, ticklabels=np.array(basis) + 1) else: pt.colorbar(scalars, colors, lbl=SCORE_TTYPE, ticklabels=basis) #print('basis = %r' % (basis,)) # Draw probability hist if has_inferred and top_assignments is not None: bin_labels = ut.get_list_column(top_assignments, 0) bin_vals = ut.get_list_column(top_assignments, 1) # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels] pt.draw_histogram(bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))), transpose=True, use_darkbackground=False, #xtick_rotation=-10, ylabel='Prob', xlabel='assignment') pt.set_title('Assignment probabilities')