Esempio n. 1
0
def draw_map_histogram(top_assignments, fnum=None, pnum=(1, 1, 1)):
    import plottool_ibeis as pt
    bin_labels = ut.get_list_column(top_assignments, 0)
    bin_vals = ut.get_list_column(top_assignments, 1)
    fnum = pt.ensure_fnum(fnum)
    # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels]
    pt.draw_histogram(
        bin_labels,
        bin_vals,
        fnum=fnum,
        pnum=pnum,
        transpose=True,
        use_darkbackground=False,
        #xtick_rotation=-10,
        ylabel='Prob',
        xlabel='assignment')
    pt.set_title('Assignment probabilities')
Esempio n. 2
0
def show_model(model, evidence={}, soft_evidence={}, **kwargs):
    """
    References:
        http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer

    Ignore:
        pkg-config --libs-only-L libcgraph
        sudo apt-get  install libgraphviz-dev -y
        sudo apt-get  install libgraphviz4 -y

        # sudo apt-get install pkg-config
        sudo apt-get install libgraphviz-dev
        # pip install git+git://github.com/pygraphviz/pygraphviz.git
        pip install pygraphviz
        python -c "import pygraphviz; print(pygraphviz.__file__)"

        sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"
        python3 -c "import pygraphviz; print(pygraphviz.__file__)"
    """
    if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'):
        draw_tree_model(model, **kwargs)
        return

    import plottool_ibeis as pt
    import networkx as netx
    import matplotlib as mpl
    fnum = pt.ensure_fnum(None)
    fig = pt.figure(fnum=fnum, pnum=(3, 1, (slice(0, 2), 0)), doclf=True)  # NOQA
    #fig = pt.figure(fnum=fnum, pnum=(3, 2, (1, slice(1, 2))), doclf=True)  # NOQA
    ax = pt.gca()
    var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])}

    netx_graph = (model)
    #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"'
    #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR'

    pos = get_hacked_pos(netx_graph)
    #netx.nx_agraph.pygraphviz_layout(netx_graph)
    #pos = netx.nx_agraph.pydot_layout(netx_graph, prog='dot')
    #pos = netx.nx_agraph.graphviz_layout(netx_graph)

    drawkw = dict(pos=pos, ax=ax, with_labels=True, node_size=1500)
    if evidence is not None:
        node_colors = [
            # (pt.TRUE_BLUE
            (pt.WHITE
             if node not in soft_evidence else
             pt.LIGHT_PINK)
            if node not in evidence
            else pt.FALSE_RED
            for node in netx_graph.nodes()]

        for node in netx_graph.nodes():
            cpd = model.var2_cpd[node]
            if cpd.ttype == 'score':
                pass
        drawkw['node_color'] = node_colors

    netx.draw(netx_graph, **drawkw)

    show_probs = True
    if show_probs:
        textprops = {
            'family': 'monospace',
            'horizontalalignment': 'left',
            #'horizontalalignment': 'center',
            #'size': 12,
            'size': 8,
        }

        textkw = dict(
            xycoords='data', boxcoords='offset points', pad=0.25,
            framewidth=True, arrowprops=dict(arrowstyle='->'),
            #bboxprops=dict(fc=node_attr['fillcolor']),
        )

        netx_nodes = model.nodes(data=True)
        node_key_list = ut.get_list_column(netx_nodes, 0)
        pos_list = ut.dict_take(pos, node_key_list)

        artist_list = []
        offset_box_list = []
        for pos_, node in zip(pos_list, netx_nodes):
            x, y = pos_
            variable = node[0]

            cpd = model.var2_cpd[variable]

            prior_marg = (cpd if cpd.evidence is None else
                          cpd.marginalize(cpd.evidence, inplace=False))

            prior_text = None

            text = None
            if variable in evidence:
                text = cpd.variable_statenames[evidence[variable]]
            elif variable in var2_post:
                post_marg = var2_post[variable]
                text = pgm_ext.make_factor_text(post_marg, 'post')
                prior_text = pgm_ext.make_factor_text(prior_marg, 'prior')
            else:
                if len(evidence) == 0 and len(soft_evidence) == 0:
                    prior_text = pgm_ext.make_factor_text(prior_marg, 'prior')

            show_post = kwargs.get('show_post', False)
            show_prior = kwargs.get('show_prior', False)
            show_prior = True
            show_post = True

            show_ev = (evidence is not None and variable in evidence)
            if (show_post or show_ev) and text is not None:
                offset_box = mpl.offsetbox.TextArea(text, textprops)
                artist = mpl.offsetbox.AnnotationBbox(
                    # offset_box, (x + 5, y), xybox=(20., 5.),
                    offset_box, (x, y + 5), xybox=(4., 20.),
                    #box_alignment=(0, 0),
                    box_alignment=(.5, 0),
                    **textkw)
                offset_box_list.append(offset_box)
                artist_list.append(artist)

            if show_prior and prior_text is not None:
                offset_box2 = mpl.offsetbox.TextArea(prior_text, textprops)
                artist2 = mpl.offsetbox.AnnotationBbox(
                    # offset_box2, (x - 5, y), xybox=(-20., -15.),
                    # offset_box2, (x, y - 5), xybox=(-15., -20.),
                    offset_box2, (x, y - 5), xybox=(-4, -20.),
                    #box_alignment=(1, 1),
                    box_alignment=(.5, 1),
                    **textkw)
                offset_box_list.append(offset_box2)
                artist_list.append(artist2)

        for artist in artist_list:
            ax.add_artist(artist)

        xmin, ymin = np.array(pos_list).min(axis=0)
        xmax, ymax = np.array(pos_list).max(axis=0)
        num_annots = len(model.ttype2_cpds['name'])
        if num_annots > 4:
            ax.set_xlim((xmin - 40, xmax + 40))
            ax.set_ylim((ymin - 50, ymax + 50))
            fig.set_size_inches(30, 7)
        else:
            ax.set_xlim((xmin - 42, xmax + 42))
            ax.set_ylim((ymin - 50, ymax + 50))
            fig.set_size_inches(23, 7)
        fig = pt.gcf()

        title = 'num_names=%r, num_annots=%r' % (model.num_names, num_annots,)
        map_assign = kwargs.get('map_assign', None)
        #max_marginal_list = []
        #for name, marginal in marginalized_joints.items():
        #    states = list(ut.iprod(*marginal.statenames))
        #    vals = marginal.values.ravel()
        #    x = vals.argmax()
        #    max_marginal_list += ['P(' + ', '.join(states[x]) + ') = ' + str(vals[x])]
        # title += str(marginal)
        top_assignments = kwargs.get('top_assignments', None)
        if top_assignments is not None:
            map_assign, map_prob = top_assignments[0]
            if map_assign is not None:
                # title += '\nMAP=' + ut.repr2(map_assign, strvals=True)
                title += '\nMAP: ' + map_assign + ' @' + '%.2f%%' % (100 * map_prob,)
        if kwargs.get('show_title', True):
            pt.set_figtitle(title, size=14)
        #pt.set_xlabel()

        def hack_fix_centeralign():
            if textprops['horizontalalignment'] == 'center':
                print('Fixing centeralign')
                fig = pt.gcf()
                fig.canvas.draw()

                # Superhack for centered text. Fix bug in
                # /usr/local/lib/python2.7/dist-packages/matplotlib/offsetbox.py
                # /usr/local/lib/python2.7/dist-packages/matplotlib/text.py
                for offset_box in offset_box_list:
                    offset_box.set_offset
                    z = offset_box._text.get_window_extent()
                    (z.x1 - z.x0) / 2
                    offset_box._text
                    T = offset_box._text.get_transform()
                    A = mpl.transforms.Affine2D()
                    A.clear()
                    A.translate((z.x1 - z.x0) / 2, 0)
                    offset_box._text.set_transform(T + A)
        hack_fix_centeralign()
    top_assignments = kwargs.get('top_assignments', None)
    if top_assignments is not None:
        bin_labels = ut.get_list_column(top_assignments, 0)
        bin_vals =  ut.get_list_column(top_assignments, 1)

        # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels]

        pt.draw_histogram(bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))),
                          transpose=True,
                          use_darkbackground=False,
                          #xtick_rotation=-10,
                          ylabel='Prob', xlabel='assignment')
        pt.set_title('Assignment probabilities')
Esempio n. 3
0
def show_chip(ibs,
              aid,
              in_image=False,
              annote=True,
              title_suffix='',
              weight_label=None,
              weights=None,
              config2_=None,
              **kwargs):
    r""" Driver function to show chips

    Args:
        ibs (ibeis.IBEISController):
        aid (int): annotation rowid
        in_image (bool): displays annotation with the context of its source image
        annote (bool): enables overlay annoations
        title_suffix (str):
        weight_label (None): (default = None)
        weights (None): (default = None)
        config2_ (dict): (default = None)

    Kwargs:
        enable_chip_title_prefix, nokpts, kpts_subset, kpts, text_color,
        notitle, draw_lbls, show_aidstr, show_gname, show_name, show_nid,
        show_exemplar, show_num_gt, show_quality_text, show_viewcode, fnum,
        title, figtitle, pnum, interpolation, cmap, heatmap, data_colorbar,
        darken, update, xlabel, redraw_image, ax, alpha, docla, doclf,
        projection, pts, ell
        color (3/4-tuple, ndarray, or str): colors for keypoints

    CommandLine:
        python -m ibeis.viz.viz_chip show_chip --show --ecc
        python -c "import utool as ut; ut.print_auto_docstr('ibeis.viz.viz_chip', 'show_chip')"
        python -m ibeis.viz.viz_chip show_chip --show --db NNP_Master3 --aids 14047 --no-annote
        python -m ibeis.viz.viz_chip show_chip --show --db NNP_Master3 --aids 14047 --no-annote

        python -m ibeis.viz.viz_chip show_chip --show --db PZ_MTEST --aid 1 --bgmethod=cnn
        python -m ibeis.viz.viz_chip show_chip --show --db PZ_MTEST --aid 1 --bgmethod=cnn --scale_max=30

        python -m ibeis.viz.viz_chip show_chip --show --db PZ_MTEST --aid 1 --ecc --draw_lbls=False --notitle --save=~/slides/lnbnn_query.jpg --dpi=300

    Example:
        >>> # VIZ_TEST
        >>> from ibeis.viz.viz_chip import *  # NOQA
        >>> import numpy as np
        >>> import vtool_ibeis as vt
        >>> in_image = False
        >>> ibs, aid_list, kwargs, config2_ = testdata_showchip()
        >>> aid = aid_list[0]
        >>> if True:
        >>>     import matplotlib as mpl
        >>>     from ibeis.scripts.thesis import TMP_RC
        >>>     mpl.rcParams.update(TMP_RC)
        >>> if ut.get_argflag('--ecc'):
        >>>     kpts = ibs.get_annot_kpts(aid, config2_=config2_)
        >>>     weights = ibs.get_annot_fgweights([aid], ensure=True, config2_=config2_)[0]
        >>>     kpts = ut.random_sample(kpts[weights > .9], 200, seed=0)
        >>>     ecc = vt.get_kpts_eccentricity(kpts)
        >>>     scale = 1 / vt.get_scales(kpts)
        >>>     #s = ecc if config2_.affine_invariance else scale
        >>>     s = scale
        >>>     colors = pt.scores_to_color(s, cmap_='jet')
        >>>     kwargs['color'] = colors
        >>>     kwargs['kpts'] = kpts
        >>>     kwargs['ell_linewidth'] = 3
        >>>     kwargs['ell_alpha'] = .7
        >>> show_chip(ibs, aid, in_image=in_image, config2_=config2_, **kwargs)
        >>> pt.show_if_requested()
    """
    if ut.VERBOSE:
        print('[viz] show_chip(aid=%r)' % (aid, ))
    #ibs.assert_valid_aids((aid,))
    # Get chip
    #print('in_image = %r' % (in_image,))
    chip = vh.get_chips(ibs, aid, in_image=in_image, config2_=config2_)
    # Create chip title
    chip_text = vh.get_annot_texts(ibs, [aid], **kwargs)[0]
    if kwargs.get('enable_chip_title_prefix', True):
        chip_title_text = chip_text + title_suffix
    else:
        chip_title_text = title_suffix
    chip_title_text = chip_title_text.strip('\n')
    # Draw chip
    fig, ax = pt.imshow(chip, **kwargs)
    # Populate axis user data
    vh.set_ibsdat(ax, 'viztype', 'chip')
    vh.set_ibsdat(ax, 'aid', aid)
    if annote and not kwargs.get('nokpts', False):
        # Get and draw keypoints
        if 'color' not in kwargs:
            if weight_label == 'fg_weights':
                if weights is None and ibs.has_species_detector(
                        ibs.get_annot_species_texts(aid)):
                    weight_label = 'fg_weights'
                    weights = ibs.get_annot_fgweights([aid],
                                                      ensure=True,
                                                      config2_=config2_)[0]
            if weights is not None:
                cmap_ = 'hot'
                #if weight_label == 'dstncvs':
                #    cmap_ = 'rainbow'
                color = pt.scores_to_color(weights,
                                           cmap_=cmap_,
                                           reverse_cmap=False)
                kwargs['color'] = color
                kwargs['ell_color'] = color
                kwargs['pts_color'] = color

        kpts_ = vh.get_kpts(ibs,
                            aid,
                            in_image,
                            config2_=config2_,
                            kpts_subset=kwargs.get('kpts_subset', None),
                            kpts=kwargs.pop('kpts', None))
        pt.viz_keypoints._annotate_kpts(kpts_, **kwargs)
        if kwargs.get('draw_lbls', True):
            pt.upperleft_text(chip_text, color=kwargs.get('text_color', None))
    use_title = not kwargs.get('notitle', False)
    if use_title:
        pt.set_title(chip_title_text)
    if in_image:
        gid = ibs.get_annot_gids(aid)
        aid_list = ibs.get_image_aids(gid)
        annotekw = viz_image.get_annot_annotations(ibs,
                                                   aid_list,
                                                   sel_aids=[aid],
                                                   draw_lbls=kwargs.get(
                                                       'draw_lbls', True))
        # Put annotation centers in the axis
        ph.set_plotdat(ax, 'annotation_bbox_list', annotekw['bbox_list'])
        ph.set_plotdat(ax, 'aid_list', aid_list)
        pt.viz_image2.draw_image_overlay(ax, **annotekw)

        zoom_ = ut.get_argval('--zoom', type_=float, default=None)
        if zoom_ is not None:
            import vtool_ibeis as vt
            # Zoom into the chip for some image context
            rotated_verts = ibs.get_annot_rotated_verts(aid)
            bbox = ibs.get_annot_bboxes(aid)
            #print(bbox)
            #print(rotated_verts)
            rotated_bbox = vt.bbox_from_verts(rotated_verts)
            imgw, imgh = ibs.get_image_sizes(gid)

            pad_factor = zoom_
            pad_length = min(bbox[2], bbox[3]) * pad_factor
            minx = max(rotated_bbox[0] - pad_length, 0)
            miny = max(rotated_bbox[1] - pad_length, 0)
            maxx = min((rotated_bbox[0] + rotated_bbox[2]) + pad_length, imgw)
            maxy = min((rotated_bbox[1] + rotated_bbox[3]) + pad_length, imgh)

            #maxy = imgh - maxy
            #miny = imgh - miny

            ax = pt.gca()
            ax.set_xlim(minx, maxx)
            ax.set_ylim(miny, maxy)
            ax.invert_yaxis()
    else:
        ph.set_plotdat(ax, 'chipshape', chip.shape)

    #if 'featweights' in vars() and 'color' in kwargs:
    if weights is not None and weight_label is not None:
        ## HACK HACK HACK
        if len(weights) > 0:
            cb = pt.colorbar(weights, kwargs['color'])
            cb.set_label(weight_label)
    return fig, ax
Esempio n. 4
0
def do_infr_test(ccs, edges, new_edges):
    """
    Creates a graph with `ccs` + `edges` and then adds `new_edges`
    """
    # import networkx as nx
    import plottool_ibeis as pt

    infr = demo.make_demo_infr(ccs, edges)

    if ut.show_was_requested():
        pt.qtensure()

    # Preshow
    fnum = 1
    if ut.show_was_requested():
        infr.set_node_attrs('shape', 'circle')
        infr.show(pnum=(2, 1, 1), fnum=fnum, show_unreviewed_edges=True,
                  show_reviewed_cuts=True,
                  splines='spline',
                  show_inferred_diff=True, groupby='name_label',
                  show_labels=True, pickable=True)
        pt.set_title('pre-review')
        pt.gca().set_aspect('equal')
        infr.set_node_attrs('pin', 'true')
        # fig1 = pt.gcf()
        # fig1.canvas.mpl_connect('pick_event', ut.partial(on_pick, infr=infr))

    infr1 = infr
    infr2 = infr.copy()
    for new_edge in new_edges:
        aid1, aid2, data = new_edge
        evidence_decision = data['evidence_decision']
        infr2.add_feedback((aid1, aid2), evidence_decision)
    infr2.relabel_using_reviews(rectify=False)
    infr2.apply_nondynamic_update()

    # Postshow
    if ut.show_was_requested():
        infr2.show(pnum=(2, 1, 2), fnum=fnum, show_unreviewed_edges=True,
                   show_inferred_diff=True, show_labels=True)
        pt.gca().set_aspect('equal')
        pt.set_title('post-review')
        # fig2 = pt.gcf()
        # if fig2 is not fig1:
        #     fig2.canvas.mpl_connect('pick_event', ut.partial(on_pick, infr=infr2))

    class Checker(object):
        """
        Asserts pre and post test properties of the graph
        """
        def __init__(self, infr1, infr2):
            self._errors = []
            self.infr1 = infr1
            self.infr2 = infr2

        def __call__(self, infr, u, v, key, val, msg):
            data = infr.get_nonvisual_edge_data((u, v))
            if data is None:
                assert infr.graph.has_edge(u, v), (
                    'uv=%r, %r does not exist'  % (u, v))
            got = data.get(key)
            if got != val:
                msg1 = 'key=%s %r!=%r, ' % (key, got, val)
                errmsg = ''.join([msg1, msg, '\nedge=', ut.repr2((u, v)), '\n',
                                 infr.repr_edge_data(data)])
                self._errors.append(errmsg)

        def custom_precheck(self, func):
            try:
                func(self.infr1)
            except AssertionError as ex:
                self._errors.append(str(ex))

        def after(self, errors=[]):
            """
            Delays error reporting until after visualization

            prints errors, then shows you the graph, then
            finally if any errors were discovered they are raised
            """

            errors = errors + self._errors
            if errors:
                ut.cprint('PRINTING %d FAILURE' % (len(errors)), 'red')
                for msg in errors:
                    print(msg)
                ut.cprint('HAD %d FAILURE' % (len(errors)), 'red')
            if ut.show_was_requested():
                pt.all_figures_tile(percent_w=.5)
                ut.show_if_requested()
            if errors:
                raise AssertionError('There were errors')

    check = Checker(infr1, infr2)
    return infr1, infr2, check
Esempio n. 5
0
def annotate_matches2(
        ibs,
        aid1,
        aid2,
        fm,
        fs,
        offset1=(0, 0),
        offset2=(0, 0),
        xywh2=None,  # (0, 0, 0, 0),
        xywh1=None,  # (0, 0, 0, 0),
        qreq_=None,
        **kwargs):
    """
    TODO: use this as the main function.
    """
    if True:
        aid_list = [aid1, aid2]
        bbox_list = [xywh1, xywh2]
        offset_list = [offset1, offset2]
        name_fm_list = [fm]
        name_fs_list = [fs]
        return annotate_matches3(ibs,
                                 aid_list,
                                 bbox_list,
                                 offset_list,
                                 name_fm_list,
                                 name_fs_list,
                                 qreq_=qreq_,
                                 **kwargs)
    else:
        # TODO: make sure all of this functionality is incorporated into annotate_matches3
        in_image = kwargs.get('in_image', False)
        show_query = kwargs.get('show_query', True)
        draw_border = kwargs.get('draw_border', True)
        draw_lbl = kwargs.get('draw_lbl', True)
        notitle = kwargs.get('notitle', False)

        truth = ibs.get_match_truth(aid1, aid2)
        truth_color = vh.get_truth_color(truth)
        # Build title
        title = vh.get_query_text(ibs, None, aid2, truth, qaid=aid1, **kwargs)
        # Build xlbl
        ax = pt.gca()
        ph.set_plotdat(ax, 'viztype', 'matches')
        ph.set_plotdat(ax, 'qaid', aid1)
        ph.set_plotdat(ax, 'aid1', aid1)
        ph.set_plotdat(ax, 'aid2', aid2)
        if draw_lbl:
            name1, name2 = ibs.get_annot_names([aid1, aid2])
            nid1, nid2 = ibs.get_annot_name_rowids([aid1, aid2],
                                                   distinguish_unknowns=False)
            #lbl1 = repr(name1)  + ' : ' + 'q' + vh.get_aidstrs(aid1)
            #lbl2 = repr(name2)  + ' : ' +  vh.get_aidstrs(aid2)
            lbl1_list = []
            lbl2_list = []
            if kwargs.get('show_aid', True):
                lbl1_list.append('q' + vh.get_aidstrs(aid1))
                lbl2_list.append(vh.get_aidstrs(aid2))
            if kwargs.get('show_name', True):
                lbl1_list.append(repr((name1)))
                lbl2_list.append(repr((name2)))
            if kwargs.get('show_nid', True):
                lbl1_list.append(vh.get_nidstrs(nid1))
                lbl2_list.append(vh.get_nidstrs(nid2))
            lbl1 = ' : '.join(lbl1_list)
            lbl2 = ' : '.join(lbl2_list)
        else:
            lbl1, lbl2 = None, None
        if vh.NO_LBL_OVERRIDE:
            title = ''
        if not notitle:
            pt.set_title(title, ax)
        # Plot annotations over images
        if in_image:
            bbox1, bbox2 = vh.get_bboxes(ibs, [aid1, aid2], [offset1, offset2])
            theta1, theta2 = ibs.get_annot_thetas([aid1, aid2])
            # HACK!
            if show_query:
                pt.draw_bbox(bbox1,
                             bbox_color=pt.ORANGE,
                             lbl=lbl1,
                             theta=theta1)
            bbox_color2 = truth_color if draw_border else pt.ORANGE
            pt.draw_bbox(bbox2, bbox_color=bbox_color2, lbl=lbl2, theta=theta2)
        else:
            xy, w, h = pt.get_axis_xy_width_height(ax)
            bbox2 = (xy[0], xy[1], w, h)
            theta2 = 0

            if xywh2 is None:
                #xywh2 = (xy[0], xy[1], w, h)
                # weird when sidebyside is off y seems to be inverted
                xywh2 = (0, 0, w, h)

            if not show_query and xywh1 is None:
                data_config2 = (None if qreq_ is None else
                                qreq_.extern_data_config2)
                # FIXME, pass data in
                kpts2 = ibs.get_annot_kpts([aid2], config2_=data_config2)[0]
                #pt.draw_kpts2(kpts2.take(fm.T[1], axis=0))
                # Draw any selected matches
                #sm_kw = dict(rect=True, colors=pt.BLUE)
                pt.plot_fmatch(None, xywh2, None, kpts2, fm, fs=fs, **kwargs)
            if draw_border:
                pt.draw_border(ax, truth_color, 4, offset=offset2)
            if draw_lbl:
                # Custom user lbl for chips 1 and 2
                if show_query:
                    (x1, y1, w1, h1) = xywh1
                    pt.absolute_lbl(x1 + w1, y1, lbl1)
                (x2, y2, w2, h2) = xywh2
                pt.absolute_lbl(x2 + w2, y2, lbl2)
        if True:
            # No matches draw a red box
            if fm is None or len(fm) == 0:
                if draw_border:
                    pass
Esempio n. 6
0
def annotate_matches3(ibs,
                      aid_list,
                      bbox_list,
                      offset_list,
                      name_fm_list,
                      name_fs_list,
                      qreq_=None,
                      **kwargs):
    """
    TODO: use this as the main function.
    """
    # TODO Use this function when you clean show_matches
    in_image = kwargs.get('in_image', False)
    #show_query  = kwargs.get('show_query', True)
    draw_border = kwargs.get('draw_border', True)
    draw_lbl = kwargs.get('draw_lbl', True)
    notitle = kwargs.get('notitle', False)
    # List of annotation scores for each annot in the name

    #printDBG('[viz] annotate_matches3()')
    #truth = ibs.get_match_truth(aid1, aid2)

    #name_equality = (
    #    np.array(ibs.get_annot_nids(aid_list[1:])) == ibs.get_annot_nids(aid_list[0])
    #).tolist()
    #truth = 1 if all(name_equality) else (2 if any(name_equality) else 0)
    #truth_color = vh.get_truth_color(truth)
    ## Build title

    #score         = kwargs.pop('score', None)
    #rawscore      = kwargs.pop('rawscore', None)
    #aid2_raw_rank = kwargs.pop('aid2_raw_rank', None)
    #print(kwargs)
    #title = vh.get_query_text(ibs, None, aid2, truth, qaid=aid1, **kwargs)
    # Build xlbl
    ax = pt.gca()
    ph.set_plotdat(ax, 'viztype', 'multi_match')
    ph.set_plotdat(ax, 'qaid', aid_list[0])
    ph.set_plotdat(ax, 'num_matches', len(aid_list) - 1)
    ph.set_plotdat(ax, 'aid_list', aid_list[1:])
    for count, aid in enumerate(aid_list, start=1):
        ph.set_plotdat(ax, 'aid%d' % (count, ), aid)

    #name_equality = (ibs.get_annot_nids(aid_list[0]) ==
    #                 np.array(ibs.get_annot_nids(aid_list[1:])))
    #truth = 1 if np.all(name_equality) else (2 if np.any(name_equality) else 0)
    truth = get_multitruth(ibs, aid_list)
    if any(ibs.is_aid_unknown(aid_list[1:])) or ibs.is_aid_unknown(
            aid_list[0]):
        truth = ibs.const.EVIDENCE_DECISION.UNKNOWN
    truth_color = vh.get_truth_color(truth)

    name_annot_scores = kwargs.get('name_annot_scores', None)
    if len(aid_list) == 2:
        # HACK; generalize to multple annots
        title = vh.get_query_text(ibs,
                                  None,
                                  aid_list[1],
                                  truth,
                                  qaid=aid_list[0],
                                  **kwargs)
        if not notitle:
            pt.set_title(title, ax)

    if draw_lbl:
        # Build labels
        nid_list = ibs.get_annot_nids(aid_list, distinguish_unknowns=False)
        name_list = ibs.get_annot_names(aid_list)
        lbls_list = [[] for _ in range(len(aid_list))]
        if kwargs.get('show_name', False):
            for count, (lbls, name) in enumerate(zip(lbls_list, name_list)):
                lbls.append(ut.repr2((name)))
        if kwargs.get('show_nid', True):
            for count, (lbls, nid) in enumerate(zip(lbls_list, nid_list)):
                # only label the first two images with nids
                LABEL_ALL_NIDS = False
                if count <= 1 or LABEL_ALL_NIDS:
                    #lbls.append(vh.get_nidstrs(nid))
                    lbls.append(('q' if count == 0 else '') +
                                vh.get_nidstrs(nid))
        if kwargs.get('show_aid', True):
            for count, (lbls, aid) in enumerate(zip(lbls_list, aid_list)):
                lbls.append(('q' if count == 0 else '') + vh.get_aidstrs(aid))
        if (kwargs.get('show_annot_score', True)
                and name_annot_scores is not None):
            max_digits = kwargs.get('score_precision', None)
            for (lbls, score) in zip(lbls_list[1:], name_annot_scores):
                lbls.append(ut.num_fmt(score, max_digits=max_digits))
        lbl_list = [' : '.join(lbls) for lbls in lbls_list]
    else:
        lbl_list = [None] * len(aid_list)
    # Plot annotations over images
    if in_image:
        in_image_bbox_list = vh.get_bboxes(ibs, aid_list, offset_list)
        in_image_theta_list = ibs.get_annot_thetas(aid_list)
        # HACK!
        #if show_query:
        #    pt.draw_bbox(bbox1, bbox_color=pt.ORANGE, lbl=lbl1, theta=theta1)
        bbox_color = pt.ORANGE
        bbox_color = truth_color if draw_border else pt.ORANGE
        for bbox, theta, lbl in zip(in_image_bbox_list, in_image_theta_list,
                                    lbl_list):
            pt.draw_bbox(bbox, bbox_color=bbox_color, lbl=lbl, theta=theta)
            pass
    else:
        xy, w, h = pt.get_axis_xy_width_height(ax)
        if draw_border:
            pt.draw_border(ax, color=truth_color, lw=4)
        if draw_lbl:
            # Custom user lbl for chips 1 and 2
            for bbox, lbl in zip(bbox_list, lbl_list):
                (x, y, w, h) = bbox
                pt.absolute_lbl(x + w, y, lbl)
    # No matches draw a red box
    if True:
        no_matches = (name_fm_list is None or all(
            [True if fm is None else len(fm) == 0 for fm in name_fm_list]))
        if no_matches:
            xy, w, h = pt.get_axis_xy_width_height(ax)
            #axes_bbox = (xy[0], xy[1], w, h)
            if draw_border:
                pass
Esempio n. 7
0
def show_name_matches(ibs,
                      qaid,
                      name_daid_list,
                      name_fm_list,
                      name_fs_list,
                      name_H1_list,
                      name_featflag_list,
                      qreq_=None,
                      **kwargs):
    """
    Called from chip_match.py

    Args:
        ibs (IBEISController):  ibeis controller object
        qaid (int):  query annotation id
        name_daid_list (list):
        name_fm_list (list):
        name_fs_list (list):
        name_H1_list (list):
        name_featflag_list (list):
        qreq_ (QueryRequest):  query request object with hyper-parameters(default = None)

    Kwargs:
        draw_fmatches, name_rank, fnum, pnum, colorbar_, nonvote_mode,
        fastmode, show_matches, fs, fm_norm, lbl1, lbl2, rect, draw_border,
        cmap, H1, H2, scale_factor1, scale_factor2, draw_pts, draw_ell,
        draw_lines, show_nMatches, all_kpts, in_image, show_query, draw_lbl,
        name_annot_scores, score, rawscore, aid2_raw_rank, show_name,
        show_nid, show_aid, show_annot_score, show_truth, name_score,
        show_name_score, show_name_rank, show_timedelta

    CommandLine:
        python -m ibeis.viz.viz_matches --exec-show_name_matches
        python -m ibeis.viz.viz_matches --test-show_name_matches --show

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.viz.viz_matches import *  # NOQA
        >>> from ibeis.algo.hots import chip_match
        >>> from ibeis.algo.hots import name_scoring
        >>> import vtool_ibeis as vt
        >>> from ibeis.algo.hots import _pipeline_helpers as plh  # NOQA
        >>> import numpy as np
        >>> func = chip_match.ChipMatch.show_single_namematch
        >>> sourcecode = ut.get_func_sourcecode(func, stripdef=True, stripret=True,
        >>>                                     strip_docstr=True)
        >>> setup = ut.regex_replace('viz_matches.show_name_matches', '#', sourcecode)
        >>> homog = False
        >>> print(ut.indent(setup, '>>> '))
        >>> ibs, qreq_, cm_list = plh.testdata_post_sver('PZ_MTEST', qaid_list=[1])
        >>> cm = cm_list[0]
        >>> cm.score_name_nsum(qreq_)
        >>> dnid = ibs.get_annot_nids(cm.qaid)
        >>> # +--- COPIED SECTION
        >>> locals_ = locals()
        >>> var_list = ut.exec_func_src(
        >>>     func, locals_=locals_,
        >>>     sentinal='name_annot_scores = cm.annot_score_list.take(sorted_groupxs')
        >>> exec(ut.execstr_dict(var_list))
        >>> # L___ COPIED SECTION
        >>> kwargs = {}
        >>> show_name_matches(ibs, qaid, name_daid_list, name_fm_list,
        >>>                   name_fs_list, name_h1_list, name_featflag_list,
        >>>                   qreq_=qreq_, **kwargs)
        >>> ut.quit_if_noshow()
        >>> ut.show_if_requested()
    """
    #print("SHOW NAME MATCHES")
    #print(ut.repr2(kwargs, nl=True))
    #from ibeis import constants as const
    from ibeis import tag_funcs
    draw_fmatches = kwargs.pop('draw_fmatches', True)
    rchip1, kpts1 = get_query_annot_pair_info(ibs, qaid, qreq_, draw_fmatches)
    rchip2_list, kpts2_list = get_data_annot_pair_info(ibs, name_daid_list,
                                                       qreq_, draw_fmatches)

    heatmask = kwargs.pop('heatmask', False)
    if heatmask:
        from vtool_ibeis.coverage_kpts import make_kpts_heatmask
        import numpy as np
        import vtool_ibeis as vt

        wh1 = vt.get_size(rchip1)
        fx1 = np.unique(np.hstack([fm.T[0] for fm in name_fm_list]))
        heatmask1 = make_kpts_heatmask(kpts1[fx1], wh1)
        rchip1 = vt.overlay_alpha_images(heatmask1, rchip1)
        # Hack cast back to uint8
        rchip1 = (rchip1 * 255).astype(np.uint8)

        rchip2_list_ = rchip2_list
        rchip2_list = []

        for rchip2, kpts2, fm in zip(rchip2_list_, kpts2_list, name_fm_list):
            fx2 = fm.T[1]
            wh2 = vt.get_size(rchip2)
            heatmask2 = make_kpts_heatmask(kpts2[fx2], wh2)
            rchip2 = vt.overlay_alpha_images(heatmask2, rchip2)
            # Hack cast back to uint8
            rchip2 = (rchip2 * 255).astype(np.uint8)
            rchip2_list.append(rchip2)
    #
    fm_list = name_fm_list
    fs_list = name_fs_list
    featflag_list = name_featflag_list
    offset_list, sf_list, bbox_list = show_multichip_match(
        rchip1, rchip2_list, kpts1, kpts2_list, fm_list, fs_list,
        featflag_list, **kwargs)
    aid_list = [qaid] + name_daid_list
    annotate_matches3(ibs,
                      aid_list,
                      bbox_list,
                      offset_list,
                      name_fm_list,
                      name_fs_list,
                      qreq_=None,
                      **kwargs)
    ax = pt.gca()
    title = vh.get_query_text(ibs,
                              None,
                              name_daid_list,
                              False,
                              qaid=qaid,
                              **kwargs)

    pt.set_title(title, ax)

    # Case tags
    annotmatch_rowid_list = ibs.get_annotmatch_rowid_from_superkey(
        [qaid] * len(name_daid_list), name_daid_list)
    annotmatch_rowid_list = ut.filter_Nones(annotmatch_rowid_list)
    tags_list = ibs.get_annotmatch_case_tags(annotmatch_rowid_list)
    if not ut.get_argflag('--show'):  # False:
        tags_list = tag_funcs.consolodate_annotmatch_tags(tags_list)
    tag_list = ut.unique_ordered(ut.flatten(tags_list))

    name_rank = kwargs.get('name_rank', None)
    truth = get_multitruth(ibs, aid_list)

    xlabel = {1: 'Correct ID', 0: 'Incorrect ID', 2: 'Unknown ID'}[truth]

    if False:
        if name_rank is None:
            xlabel = {1: 'Genuine', 0: 'Imposter', 2: 'Unknown'}[truth]
            #xlabel = {1: 'True', 0: 'False', 2: 'Unknown'}[truth]
        else:
            if name_rank == 0:
                xlabel = {
                    1: 'True Positive',
                    0: 'False Positive',
                    2: 'Unknown'
                }[truth]
            else:
                xlabel = {
                    1: 'False Negative',
                    0: 'True Negative',
                    2: 'Unknown'
                }[truth]

    if len(tag_list) > 0:
        xlabel += '\n' + ', '.join(tag_list)

    noshow_truth = ut.get_argflag('--noshow_truth')
    if not noshow_truth:
        pt.set_xlabel(xlabel)
    return ax
Esempio n. 8
0
def show_model(model, evidence={}, soft_evidence={}, **kwargs):
    """
    References:
        http://stackoverflow.com/questions/22207802/pygraphviz-networkx-set-node-level-or-layer

    Ignore:
        pkg-config --libs-only-L libcgraph
        sudo apt-get  install libgraphviz-dev -y
        sudo apt-get  install libgraphviz4 -y

        # sudo apt-get install pkg-config
        sudo apt-get install libgraphviz-dev
        # pip install git+git://github.com/pygraphviz/pygraphviz.git
        pip install pygraphviz
        python -c "import pygraphviz; print(pygraphviz.__file__)"

        sudo pip3 install pygraphviz --install-option="--include-path=/usr/include/graphviz" --install-option="--library-path=/usr/lib/graphviz/"
        python3 -c "import pygraphviz; print(pygraphviz.__file__)"

    CommandLine:
        python -m ibeis.algo.hots.bayes --exec-show_model --show

    Example:
        >>> # DISABLE_DOCTEST
        >>> from ibeis.algo.hots.bayes import *  # NOQA
        >>> model = '?'
        >>> evidence = {}
        >>> soft_evidence = {}
        >>> result = show_model(model, evidence, soft_evidence)
        >>> print(result)
        >>> ut.quit_if_noshow()
        >>> import plottool_ibeis as pt
        >>> ut.show_if_requested()
    """
    if ut.get_argval('--hackmarkov') or ut.get_argval('--hackjunc'):
        draw_tree_model(model, **kwargs)
        return

    import plottool_ibeis as pt
    import networkx as netx
    fnum = pt.ensure_fnum(None)
    netx_graph = (model)
    #netx_graph.graph.setdefault('graph', {})['size'] = '"10,5"'
    #netx_graph.graph.setdefault('graph', {})['rankdir'] = 'LR'

    pos_dict = get_hacked_pos(netx_graph)
    #pos_dict = netx.nx_agraph.pygraphviz_layout(netx_graph)
    #pos = netx.nx_agraph.nx_pydot.pydot_layout(netx_graph, prog='dot')
    #pos_dict = netx.nx_agraph.graphviz_layout(netx_graph)

    textprops = {
        'family': 'monospace',
        'horizontalalignment': 'left',
        #'horizontalalignment': 'center',
        #'size': 12,
        'size': 8,
    }

    netx_nodes = model.nodes(data=True)
    node_key_list = ut.get_list_column(netx_nodes, 0)
    pos_list = ut.dict_take(pos_dict, node_key_list)

    var2_post = {f.variables[0]: f for f in kwargs.get('factor_list', [])}

    prior_text = None
    post_text = None
    evidence_tas = []
    post_tas = []
    prior_tas = []
    node_color = []

    has_inferred = evidence or var2_post
    if has_inferred:
        ignore_prior_with_ttype = [SCORE_TTYPE, MATCH_TTYPE]
        show_prior = False
    else:
        ignore_prior_with_ttype = []
        #show_prior = True
        show_prior = False

    dpy = 5
    dbx, dby = (20, 20)
    takw1 = {'bbox_align': (.5, 0), 'pos_offset': [0, dpy], 'bbox_offset': [dbx, dby]}
    takw2 = {'bbox_align': (.5, 1), 'pos_offset': [0, -dpy], 'bbox_offset': [-dbx, -dby]}

    name_colors = pt.distinct_colors(max(model.num_names, 10))
    name_colors = name_colors[:model.num_names]

    #cmap_ = 'hot' #mx = 0.65 #mn = 0.15
    cmap_, mn, mx = 'plasma', 0.15, 1.0
    _cmap = pt.plt.get_cmap(cmap_)
    def cmap(x):
        return _cmap((x * mx) + mn)

    for node, pos in zip(netx_nodes, pos_list):
        variable = node[0]
        cpd = model.var2_cpd[variable]
        prior_marg = (cpd if cpd.evidence is None else
                      cpd.marginalize(cpd.evidence, inplace=False))

        show_evidence = variable in evidence
        show_prior = cpd.ttype not in ignore_prior_with_ttype
        show_post = variable in var2_post
        show_prior |= cpd.ttype not in ignore_prior_with_ttype

        post_marg = None

        if show_post:
            post_marg = var2_post[variable]

        def get_name_color(phi):
            order = phi.values.argsort()[::-1]
            if len(order) < 2:
                dist_next = phi.values[order[0]]
            else:
                dist_next = phi.values[order[0]] - phi.values[order[1]]
            dist_total = (phi.values[order[0]])
            confidence = (dist_total * dist_next) ** (2.5 / 4)
            #print('confidence = %r' % (confidence,))
            color = name_colors[order[0]]
            color = pt.color_funcs.desaturate_rgb(color, 1 - confidence)
            color = np.array(color)
            return color

        if variable in evidence:
            if cpd.ttype == SCORE_TTYPE:
                cmap_index = evidence[variable] / (cpd.variable_card - 1)
                color = cmap(cmap_index)
                color = pt.lighten_rgb(color, .4)
                color = np.array(color)
                node_color.append(color)
            elif cpd.ttype == NAME_TTYPE:
                color = name_colors[evidence[variable]]
                color = np.array(color)
                node_color.append(color)
            else:
                color = pt.FALSE_RED
                node_color.append(color)
        #elif variable in soft_evidence:
        #    color = pt.LIGHT_PINK
        #    show_prior = True
        #    color = get_name_color(prior_marg)
        #    node_color.append(color)
        else:
            if cpd.ttype == NAME_TTYPE and post_marg is not None:
                color = get_name_color(post_marg)
                node_color.append(color)
            elif cpd.ttype == MATCH_TTYPE and post_marg is not None:
                color = cmap(post_marg.values[1])
                color = pt.lighten_rgb(color, .4)
                color = np.array(color)
                node_color.append(color)
            else:
                #color = pt.WHITE
                color = pt.NEUTRAL
                node_color.append(color)

        if show_prior:
            if variable in soft_evidence:
                prior_color = pt.LIGHT_PINK
            else:
                prior_color = None
            prior_text = pgm_ext.make_factor_text(prior_marg, 'prior')
            prior_tas.append(dict(text=prior_text, pos=pos, color=prior_color, **takw2))
        if show_evidence:
            _takw1 = takw1
            if cpd.ttype == SCORE_TTYPE:
                _takw1 = takw2
            evidence_text = cpd.variable_statenames[evidence[variable]]
            if isinstance(evidence_text, int):
                evidence_text = '%d/%d' % (evidence_text + 1, cpd.variable_card)
            evidence_tas.append(dict(text=evidence_text, pos=pos, color=color, **_takw1))
        if show_post:
            _takw1 = takw1
            if cpd.ttype == MATCH_TTYPE:
                _takw1 = takw2
            post_text = pgm_ext.make_factor_text(post_marg, 'post')
            post_tas.append(dict(text=post_text, pos=pos, color=None, **_takw1))

    def trnps_(dict_list):
        """ tranpose dict list """
        list_dict = ut.ddict(list)
        for dict_ in dict_list:
            for key, val in dict_.items():
                list_dict[key + '_list'].append(val)
        return list_dict

    takw1_ = trnps_(post_tas + evidence_tas)
    takw2_ = trnps_(prior_tas)

    # Draw graph
    if has_inferred:
        pnum1 = (3, 1, (slice(0, 2), 0))
    else:
        pnum1 = None

    fig = pt.figure(fnum=fnum, pnum=pnum1, doclf=True)  # NOQA
    ax = pt.gca()
    #print('node_color = %s' % (ut.repr3(node_color),))
    drawkw = dict(pos=pos_dict, ax=ax, with_labels=True, node_size=1500,
                  node_color=node_color)
    netx.draw(netx_graph, **drawkw)

    hacks = []
    if len(post_tas + evidence_tas):
        hacks.append(pt.draw_text_annotations(textprops=textprops, **takw1_))
    if prior_tas:
        hacks.append(pt.draw_text_annotations(textprops=textprops, **takw2_))

    xmin, ymin = np.array(pos_list).min(axis=0)
    xmax, ymax = np.array(pos_list).max(axis=0)
    num_annots = len(model.ttype2_cpds[NAME_TTYPE])
    if num_annots > 4:
        ax.set_xlim((xmin - 40, xmax + 40))
        ax.set_ylim((ymin - 50, ymax + 50))
        fig.set_size_inches(30, 7)
    else:
        ax.set_xlim((xmin - 42, xmax + 42))
        ax.set_ylim((ymin - 50, ymax + 50))
        fig.set_size_inches(23, 7)
    fig = pt.gcf()

    title = 'num_names=%r, num_annots=%r' % (model.num_names, num_annots,)
    map_assign = kwargs.get('map_assign', None)

    top_assignments = kwargs.get('top_assignments', None)
    if top_assignments is not None:
        map_assign, map_prob = top_assignments[0]
        if map_assign is not None:
            def word_insert(text):
                return '' if len(text) == 0 else text + ' '
            title += '\n%sMAP: ' % (word_insert(kwargs.get('method', '')))
            title += map_assign + ' @' + '%.2f%%' % (100 * map_prob,)
    if kwargs.get('show_title', True):
        pt.set_figtitle(title, size=14)

    for hack in hacks:
        hack()

    # Hack in colorbars
    if has_inferred:
        pt.colorbar(np.linspace(0, 1, len(name_colors)), name_colors, lbl=NAME_TTYPE,
                    ticklabels=model.ttype2_template[NAME_TTYPE].basis, ticklocation='left')

        basis = model.ttype2_template[SCORE_TTYPE].basis
        scalars = np.linspace(0, 1, len(basis))
        scalars = np.linspace(0, 1, 100)
        colors = pt.scores_to_color(scalars, cmap_=cmap_, reverse_cmap=False,
                                    cmap_range=(mn, mx))
        colors = [pt.lighten_rgb(c, .4) for c in colors]

        if ut.list_type(basis) is int:
            pt.colorbar(scalars, colors, lbl=SCORE_TTYPE, ticklabels=np.array(basis) + 1)
        else:
            pt.colorbar(scalars, colors, lbl=SCORE_TTYPE, ticklabels=basis)
            #print('basis = %r' % (basis,))

    # Draw probability hist
    if has_inferred and top_assignments is not None:
        bin_labels = ut.get_list_column(top_assignments, 0)
        bin_vals =  ut.get_list_column(top_assignments, 1)

        # bin_labels = ['\n'.join(ut.textwrap.wrap(_lbl, width=30)) for _lbl in bin_labels]

        pt.draw_histogram(bin_labels, bin_vals, fnum=fnum, pnum=(3, 8, (2, slice(4, None))),
                          transpose=True,
                          use_darkbackground=False,
                          #xtick_rotation=-10,
                          ylabel='Prob', xlabel='assignment')
        pt.set_title('Assignment probabilities')