def run_training(): if not os.path.exists(os.path.dirname(FLAGS.checkpoints_dir)): os.mkdir(os.path.dirname(FLAGS.checkpoints_dir)) if not os.path.exists(FLAGS.checkpoints_dir): os.mkdir(FLAGS.checkpoints_dir) poems_vector,word_to_int,vocabularies=process_poems(FLAGS.file_path) batch_inputs,batch_outputs=generate_batch(FLAGS.batch_size,poems_vector,word_to_int) input_data=tf.placeholder(tf.int32,[FLAGS.batch_size,None]) output_targets=tf.placeholder(tf.int32,[FLAGS.batch_size,None]) end_points=rnn_model(model="lstm",input_data=input_data,\ output_data=output_targets,vocab_size=len(vocabularies),\ rnn_size=128,num_layers=2,batch_size=64,learning_rate=FLAGS.learning_rate) saver=tf.train.Saver(tf.global_variables()) init_op=tf.group(tf.global_variables_initializer(),tf.local_variables_initializer()) with tf.Session() as sess: sess.run(init_op) start_epoch=0 checkpoint=tf.train.latest_checkpoint(FLAGS.checkpoints_dir) if checkpoint: saver.restore(sess,checkpoint) print("[INFO] restore from the checkpoint{0}".format(checkpoint)) start_epoch +=int(checkpoint.split('-')[-1]) print("[INFO] start trianing...") try: for epoch in range(start_epoch,FLAGS.epoches): n=0 n_chunk = len(poems_vector)//FLAGS.batch_size for batch in range(n_chunk): loss,_,_=sess.run([end_points['total_loss'],end_points['last_state'],end_points['train_op']]\ ,feed_dict={input_data:batch_inputs[n],output_targets:batch_outputs[n]}) n+=1 print("[INFO]Epoch:%d,batch:%d,training loss:%6f"%(epoch,batch,loss)) if epoch %6==0: saver.save(sess,os.path.join(FLAGS.checkpoints_dir,FLAGS.model_prefix),global_step=epoch) except KeyboardInterrupt: print("[INFO] Interrupt manually,try saving checkpoint for now...") saver.save(sess,os.path.join(FLAGS.checkpoints_dir,FLAGS.model_prefix),global_step=epoch) print("[INFO]Last epoch were saved,next time will start from epoch{}".format(epoch))
def run_training(): # 模型保存路径不存在则创建 if not os.path.exists(FLAGS.model_dir): os.makedirs(FLAGS.model_dir) # process_poems对古诗进行预处理 poems_vector, word_to_int, vocabularies = process_poems(FLAGS.file_path) # batches_inputs, batches_outputs = generate_batch(FLAGS.batch_size, poems_vector, word_to_int) # 占位向量 input_data = tf.placeholder(tf.int32, [FLAGS.batch_size, None]) output_targets = tf.placeholder(tf.int32, [FLAGS.batch_size, None]) # 使用lstm模型进行训练 end_points = rnn_model(model='lstm', input_data=input_data, output_data=output_targets, vocab_size=len(vocabularies), rnn_size=128, num_layers=2, batch_size=FLAGS.batch_size, learning_rate=FLAGS.learning_rate) saver = tf.train.Saver(tf.global_variables()) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) with tf.Session() as sess: # sess = tf_debug.LocalCLIDebugWrapperSession(sess=sess) # sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan) sess.run(init_op) start_epoch = 0 checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir) # 如果之前训练过就找回之前的训练结果 if checkpoint: saver.restore(sess, checkpoint) print("## restore from the checkpoint {0}".format(checkpoint)) start_epoch += int(checkpoint.split('-')[-1]) print('## start training...') try: n_chunk = len(poems_vector) // FLAGS.batch_size for epoch in range(start_epoch, FLAGS.epochs): #每次对其中的数据shuffle一次 # print(type(poems_vector)) random.shuffle(poems_vector) # print(type(poems_vector)) # 这里有每一次输入的训练数据的列表 batches_inputs, batches_outputs = generate_batch( FLAGS.batch_size, poems_vector, word_to_int) n = 0 for batch in range(n_chunk): loss, _, _ = sess.run( [ end_points['total_loss'], end_points['last_state'], end_points['train_op'] ], feed_dict={ input_data: batches_inputs[n], output_targets: batches_outputs[n] }) n += 1 print('Epoch: %d/%d, batch: %d/%d, training loss: %.6f' % (epoch, FLAGS.epochs - 1, batch, n_chunk - 1, loss)) if epoch % 6 == 0: saver.save(sess, os.path.join(FLAGS.model_dir, FLAGS.model_prefix), global_step=epoch) alltime = time.time() - start_time print("Time: %d h %d min % ds" % (alltime // 3600, (alltime - alltime // 3600 * 3600) // 60, alltime % 60)) except KeyboardInterrupt: print('## Interrupt manually, try saving checkpoint for now...') saver.save(sess, os.path.join(FLAGS.model_dir, FLAGS.model_prefix), global_step=epoch) print( '## Last epoch were saved, next time will start from epoch {}.' .format(epoch))
def run_training(): if not os.path.exists(os.path.dirname(FLAGS.checkpoints_dir)): os.mkdir(os.path.dirname(FLAGS.checkpoints_dir)) if not os.path.exists(FLAGS.checkpoints_dir): os.mkdir(FLAGS.checkpoints_dir) # 单词转化的数字:向量,单词和数字一一对应的字典,单词 poems_vector, word_to_int, vocabularies = process_poems(FLAGS.file_path) # 真实值和目标值 batches_inputs, batches_outputs = generate_batch(FLAGS.batch_size, poems_vector, word_to_int) # 数据占位符 input_data = tf.placeholder(tf.int32, [FLAGS.batch_size, None]) output_targets = tf.placeholder(tf.int32, [FLAGS.batch_size, None]) end_points = rnn_model(model='lstm', input_data=input_data, output_data=output_targets, vocab_size=len(vocabularies), rnn_size=128, num_layers=2, batch_size=64, learning_rate=FLAGS.learning_rate) # 实例化保存模型 saver = tf.train.Saver(tf.global_variables()) # 全局变量进行初始化 init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) with tf.Session() as sess: # sess = tf_debug.LocalCLIDebugWrapperSession(sess=sess) # sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan) # 先执行,全局变量初始化 sess.run(init_op) start_epoch = 0 # 把之前训练过的checkpoint拿出来 checkpoint = tf.train.latest_checkpoint(FLAGS.checkpoints_dir) if checkpoint: # 拿出训练保存模型 saver.restore(sess, checkpoint) print("[INFO] restore from the checkpoint {0}".format(checkpoint)) start_epoch += int(checkpoint.split('-')[-1]) print('[INFO] start training...') try: for epoch in range(start_epoch, FLAGS.epochs): n = 0 # 多少行唐诗//每次训练的个数 n_chunk = len(poems_vector) // FLAGS.batch_size for batch in range(n_chunk): loss, _, _ = sess.run( [ end_points['total_loss'], # 损失 end_points['last_state'], # 最后一次输出 end_points['train_op'] # 训练优化损失 ], feed_dict={ input_data: batches_inputs[n], output_targets: batches_outputs[n] }) n += 1 print( '[INFO] Epoch: %d , batch: %d , training loss: %.6f' % (epoch, batch, loss)) if epoch % 6 == 0: # 每隔多少次保存 saver.save(sess, FLAGS.checkpoints_dir, global_step=epoch) except KeyboardInterrupt: print( '[INFO] Interrupt manually, try saving checkpoint for now...') saver.save(sess, FLAGS.checkpoints_dir, global_step=epoch) print( '[INFO] Last epoch were saved, next time will start from epoch {}.' .format(epoch))
def run_training(): if not os.path.exists(FLAGS.model_dir): os.makedirs(FLAGS.model_dir) poems_vector, word_to_int, vocabularies = process_poems(FLAGS.file_path) batches_inputs, batches_outputs = generate_batch(FLAGS.batch_size, poems_vector, word_to_int) input_data = tf.placeholder(tf.int32, [FLAGS.batch_size, None]) output_targets = tf.placeholder(tf.int32, [FLAGS.batch_size, None]) end_points = rnn_model(model='lstm', input_data=input_data, output_data=output_targets, vocab_size=len(vocabularies), rnn_size=128, num_layers=2, batch_size=64, learning_rate=FLAGS.learning_rate) saver = tf.train.Saver(tf.global_variables()) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) with tf.Session() as sess: # sess = tf_debug.LocalCLIDebugWrapperSession(sess=sess) # sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan) sess.run(init_op) start_epoch = 0 checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir) if checkpoint: saver.restore(sess, checkpoint) print("## restore from the checkpoint {0}".format(checkpoint)) start_epoch += int(checkpoint.split('-')[-1]) print('## start training...') try: for epoch in range(start_epoch, FLAGS.epochs): n = 0 n_chunk = len(poems_vector) // FLAGS.batch_size for batch in range(n_chunk): loss, _, _ = sess.run( [ end_points['total_loss'], end_points['last_state'], end_points['train_op'] ], feed_dict={ input_data: batches_inputs[n], output_targets: batches_outputs[n] }) n += 1 print('Epoch: %d, batch: %d, training loss: %.6f' % (epoch, batch, loss)) if epoch % 6 == 0: saver.save(sess, os.path.join(FLAGS.model_dir, FLAGS.model_prefix), global_step=epoch) except KeyboardInterrupt: print('## Interrupt manually, try saving checkpoint for now...') saver.save(sess, os.path.join(FLAGS.model_dir, FLAGS.model_prefix), global_step=epoch) print( '## Last epoch were saved, next time will start from epoch {}.' .format(epoch))