Exemple #1
0
def run_training():

    if not os.path.exists(os.path.dirname(FLAGS.checkpoints_dir)):
        os.mkdir(os.path.dirname(FLAGS.checkpoints_dir))

    if not os.path.exists(FLAGS.checkpoints_dir):
        os.mkdir(FLAGS.checkpoints_dir)

    poems_vector,word_to_int,vocabularies=process_poems(FLAGS.file_path)
    batch_inputs,batch_outputs=generate_batch(FLAGS.batch_size,poems_vector,word_to_int)

    input_data=tf.placeholder(tf.int32,[FLAGS.batch_size,None])
    output_targets=tf.placeholder(tf.int32,[FLAGS.batch_size,None])

    end_points=rnn_model(model="lstm",input_data=input_data,\
                         output_data=output_targets,vocab_size=len(vocabularies),\
                         rnn_size=128,num_layers=2,batch_size=64,learning_rate=FLAGS.learning_rate)

    saver=tf.train.Saver(tf.global_variables())
    init_op=tf.group(tf.global_variables_initializer(),tf.local_variables_initializer())
    with tf.Session() as sess:
        sess.run(init_op)
        start_epoch=0
        checkpoint=tf.train.latest_checkpoint(FLAGS.checkpoints_dir)
        if checkpoint:
            saver.restore(sess,checkpoint)
            print("[INFO] restore from the checkpoint{0}".format(checkpoint))
            start_epoch +=int(checkpoint.split('-')[-1])
        print("[INFO] start trianing...")

        try:
            for epoch in range(start_epoch,FLAGS.epoches):
                n=0
                n_chunk = len(poems_vector)//FLAGS.batch_size
                for batch in range(n_chunk):
                    loss,_,_=sess.run([end_points['total_loss'],end_points['last_state'],end_points['train_op']]\
                                      ,feed_dict={input_data:batch_inputs[n],output_targets:batch_outputs[n]})
                    n+=1
                    print("[INFO]Epoch:%d,batch:%d,training loss:%6f"%(epoch,batch,loss))
                if epoch %6==0:
                    saver.save(sess,os.path.join(FLAGS.checkpoints_dir,FLAGS.model_prefix),global_step=epoch)
        except KeyboardInterrupt:
            print("[INFO] Interrupt manually,try saving checkpoint for now...")
            saver.save(sess,os.path.join(FLAGS.checkpoints_dir,FLAGS.model_prefix),global_step=epoch)
            print("[INFO]Last epoch were saved,next time will start from epoch{}".format(epoch))
Exemple #2
0
def run_training():
    # 模型保存路径不存在则创建
    if not os.path.exists(FLAGS.model_dir):
        os.makedirs(FLAGS.model_dir)

    # process_poems对古诗进行预处理
    poems_vector, word_to_int, vocabularies = process_poems(FLAGS.file_path)
    # batches_inputs, batches_outputs = generate_batch(FLAGS.batch_size, poems_vector, word_to_int)

    # 占位向量
    input_data = tf.placeholder(tf.int32, [FLAGS.batch_size, None])
    output_targets = tf.placeholder(tf.int32, [FLAGS.batch_size, None])

    # 使用lstm模型进行训练
    end_points = rnn_model(model='lstm',
                           input_data=input_data,
                           output_data=output_targets,
                           vocab_size=len(vocabularies),
                           rnn_size=128,
                           num_layers=2,
                           batch_size=FLAGS.batch_size,
                           learning_rate=FLAGS.learning_rate)

    saver = tf.train.Saver(tf.global_variables())
    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())
    with tf.Session() as sess:
        # sess = tf_debug.LocalCLIDebugWrapperSession(sess=sess)
        # sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
        sess.run(init_op)
        start_epoch = 0
        checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir)
        # 如果之前训练过就找回之前的训练结果
        if checkpoint:
            saver.restore(sess, checkpoint)
            print("## restore from the checkpoint {0}".format(checkpoint))
            start_epoch += int(checkpoint.split('-')[-1])
        print('## start training...')
        try:
            n_chunk = len(poems_vector) // FLAGS.batch_size
            for epoch in range(start_epoch, FLAGS.epochs):
                #每次对其中的数据shuffle一次
                # print(type(poems_vector))
                random.shuffle(poems_vector)
                # print(type(poems_vector))
                # 这里有每一次输入的训练数据的列表
                batches_inputs, batches_outputs = generate_batch(
                    FLAGS.batch_size, poems_vector, word_to_int)
                n = 0
                for batch in range(n_chunk):
                    loss, _, _ = sess.run(
                        [
                            end_points['total_loss'], end_points['last_state'],
                            end_points['train_op']
                        ],
                        feed_dict={
                            input_data: batches_inputs[n],
                            output_targets: batches_outputs[n]
                        })
                    n += 1
                    print('Epoch: %d/%d, batch: %d/%d, training loss: %.6f' %
                          (epoch, FLAGS.epochs - 1, batch, n_chunk - 1, loss))
                if epoch % 6 == 0:
                    saver.save(sess,
                               os.path.join(FLAGS.model_dir,
                                            FLAGS.model_prefix),
                               global_step=epoch)
                alltime = time.time() - start_time
                print("Time: %d h %d min % ds" %
                      (alltime // 3600,
                       (alltime - alltime // 3600 * 3600) // 60, alltime % 60))
        except KeyboardInterrupt:
            print('## Interrupt manually, try saving checkpoint for now...')
            saver.save(sess,
                       os.path.join(FLAGS.model_dir, FLAGS.model_prefix),
                       global_step=epoch)
            print(
                '## Last epoch were saved, next time will start from epoch {}.'
                .format(epoch))
Exemple #3
0
def run_training():
    if not os.path.exists(os.path.dirname(FLAGS.checkpoints_dir)):
        os.mkdir(os.path.dirname(FLAGS.checkpoints_dir))
    if not os.path.exists(FLAGS.checkpoints_dir):
        os.mkdir(FLAGS.checkpoints_dir)
    # 单词转化的数字:向量,单词和数字一一对应的字典,单词
    poems_vector, word_to_int, vocabularies = process_poems(FLAGS.file_path)
    # 真实值和目标值
    batches_inputs, batches_outputs = generate_batch(FLAGS.batch_size,
                                                     poems_vector, word_to_int)
    # 数据占位符
    input_data = tf.placeholder(tf.int32, [FLAGS.batch_size, None])
    output_targets = tf.placeholder(tf.int32, [FLAGS.batch_size, None])

    end_points = rnn_model(model='lstm',
                           input_data=input_data,
                           output_data=output_targets,
                           vocab_size=len(vocabularies),
                           rnn_size=128,
                           num_layers=2,
                           batch_size=64,
                           learning_rate=FLAGS.learning_rate)
    # 实例化保存模型
    saver = tf.train.Saver(tf.global_variables())
    # 全局变量进行初始化
    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())
    with tf.Session() as sess:
        # sess = tf_debug.LocalCLIDebugWrapperSession(sess=sess)
        # sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
        # 先执行,全局变量初始化
        sess.run(init_op)

        start_epoch = 0
        # 把之前训练过的checkpoint拿出来
        checkpoint = tf.train.latest_checkpoint(FLAGS.checkpoints_dir)
        if checkpoint:
            # 拿出训练保存模型
            saver.restore(sess, checkpoint)
            print("[INFO] restore from the checkpoint {0}".format(checkpoint))
            start_epoch += int(checkpoint.split('-')[-1])
        print('[INFO] start training...')
        try:
            for epoch in range(start_epoch, FLAGS.epochs):
                n = 0
                # 多少行唐诗//每次训练的个数
                n_chunk = len(poems_vector) // FLAGS.batch_size
                for batch in range(n_chunk):
                    loss, _, _ = sess.run(
                        [
                            end_points['total_loss'],  # 损失
                            end_points['last_state'],  # 最后一次输出
                            end_points['train_op']  # 训练优化损失
                        ],
                        feed_dict={
                            input_data: batches_inputs[n],
                            output_targets: batches_outputs[n]
                        })
                    n += 1
                    print(
                        '[INFO] Epoch: %d , batch: %d , training loss: %.6f' %
                        (epoch, batch, loss))
                if epoch % 6 == 0:  # 每隔多少次保存
                    saver.save(sess, FLAGS.checkpoints_dir, global_step=epoch)
        except KeyboardInterrupt:
            print(
                '[INFO] Interrupt manually, try saving checkpoint for now...')
            saver.save(sess, FLAGS.checkpoints_dir, global_step=epoch)
            print(
                '[INFO] Last epoch were saved, next time will start from epoch {}.'
                .format(epoch))
Exemple #4
0
def run_training():
    if not os.path.exists(FLAGS.model_dir):
        os.makedirs(FLAGS.model_dir)

    poems_vector, word_to_int, vocabularies = process_poems(FLAGS.file_path)
    batches_inputs, batches_outputs = generate_batch(FLAGS.batch_size,
                                                     poems_vector, word_to_int)

    input_data = tf.placeholder(tf.int32, [FLAGS.batch_size, None])
    output_targets = tf.placeholder(tf.int32, [FLAGS.batch_size, None])

    end_points = rnn_model(model='lstm',
                           input_data=input_data,
                           output_data=output_targets,
                           vocab_size=len(vocabularies),
                           rnn_size=128,
                           num_layers=2,
                           batch_size=64,
                           learning_rate=FLAGS.learning_rate)

    saver = tf.train.Saver(tf.global_variables())
    init_op = tf.group(tf.global_variables_initializer(),
                       tf.local_variables_initializer())
    with tf.Session() as sess:
        # sess = tf_debug.LocalCLIDebugWrapperSession(sess=sess)
        # sess.add_tensor_filter("has_inf_or_nan", tf_debug.has_inf_or_nan)
        sess.run(init_op)

        start_epoch = 0
        checkpoint = tf.train.latest_checkpoint(FLAGS.model_dir)
        if checkpoint:
            saver.restore(sess, checkpoint)
            print("## restore from the checkpoint {0}".format(checkpoint))
            start_epoch += int(checkpoint.split('-')[-1])
        print('## start training...')
        try:
            for epoch in range(start_epoch, FLAGS.epochs):
                n = 0
                n_chunk = len(poems_vector) // FLAGS.batch_size
                for batch in range(n_chunk):
                    loss, _, _ = sess.run(
                        [
                            end_points['total_loss'], end_points['last_state'],
                            end_points['train_op']
                        ],
                        feed_dict={
                            input_data: batches_inputs[n],
                            output_targets: batches_outputs[n]
                        })
                    n += 1
                    print('Epoch: %d, batch: %d, training loss: %.6f' %
                          (epoch, batch, loss))
                if epoch % 6 == 0:
                    saver.save(sess,
                               os.path.join(FLAGS.model_dir,
                                            FLAGS.model_prefix),
                               global_step=epoch)
        except KeyboardInterrupt:
            print('## Interrupt manually, try saving checkpoint for now...')
            saver.save(sess,
                       os.path.join(FLAGS.model_dir, FLAGS.model_prefix),
                       global_step=epoch)
            print(
                '## Last epoch were saved, next time will start from epoch {}.'
                .format(epoch))