# # a2 = fig2.add_subplot(111,projection='3d')
    # # a2.scatter(ps2[:,0],ps2[:,1],ps2[:,2])

    # plt.show()

    foldingnet = FoldingNet_graph()

    #foldingnet.load_state_dict(torch.load('cls_fold_512code_2500points/foldingnet_model_170.pth'))
    foldingnet.load_state_dict(
        torch.load(
            'cls_fold_512code_2500points_170_restart/foldingnet_model_150.pth')
    )

    foldingnet.cuda()

    chamferloss = ChamferLoss()
    chamferloss = chamferloss.cuda()
    #print(foldingnet)

    foldingnet.eval()

    i, data = li[1]
    points, target = data

    batch_graph, Cov = build_graph(points, opt)

    Cov = Cov.transpose(2, 1)
    Cov = Cov.cuda()

    points = points.transpose(2, 1)
    points = points.cuda()