# # a2 = fig2.add_subplot(111,projection='3d') # # a2.scatter(ps2[:,0],ps2[:,1],ps2[:,2]) # plt.show() foldingnet = FoldingNet_graph() #foldingnet.load_state_dict(torch.load('cls_fold_512code_2500points/foldingnet_model_170.pth')) foldingnet.load_state_dict( torch.load( 'cls_fold_512code_2500points_170_restart/foldingnet_model_150.pth') ) foldingnet.cuda() chamferloss = ChamferLoss() chamferloss = chamferloss.cuda() #print(foldingnet) foldingnet.eval() i, data = li[1] points, target = data batch_graph, Cov = build_graph(points, opt) Cov = Cov.transpose(2, 1) Cov = Cov.cuda() points = points.transpose(2, 1) points = points.cuda()