Example #1
0
def combination_data(file_ob_list, file_names):
    data = pd.read_csv(file_ob_list[0], header=None, sep='\t')
    wave_number = data[0]
    #data[1] = loren(wave_number,data[1])
    data[1] = pre_treatment.pull_baseline_jx(data[1])
    #plt.plot(data[1])
    data = np.array(data).T

    print("0/%d" % (len(file_ob_list)))
    for i in range(1, len(file_ob_list)):
        data_1 = pd.read_csv(file_ob_list[i], header=None, sep='\t')
        #RI = np.array(loren(wave_number,data_1[1])).T
        RI = pre_treatment.pull_baseline_jx(data[1])
        data = np.vstack([data, RI])

        print("%d/%d" % (i, len(file_ob_list)))

    data = pd.DataFrame(data.T)
    file_names = np.array(file_names)
    w = "wave number"
    file_names = np.hstack([w, file_names])
    #print(file_names)
    data.columns = file_names
    print(data)
    return data
Example #2
0
def loren(w, r):

    r = pre_treatment.pull_baseline_jx(r)
    try:
        _, RI = peak_decomposition.my_predict_fit(w, r, 20)
    except:
        try:
            _, RI = peak_decomposition.my_predict_fit(w, r, 10)
        except:
            _, RI = peak_decomposition.my_predict_fit(w, r, 5)

    RI = pre_treatment.pull_baseline_jx(RI + 1000)

    RI = pd.DataFrame(RI)
    return RI