def combination_data(file_ob_list, file_names): data = pd.read_csv(file_ob_list[0], header=None, sep='\t') wave_number = data[0] #data[1] = loren(wave_number,data[1]) data[1] = pre_treatment.pull_baseline_jx(data[1]) #plt.plot(data[1]) data = np.array(data).T print("0/%d" % (len(file_ob_list))) for i in range(1, len(file_ob_list)): data_1 = pd.read_csv(file_ob_list[i], header=None, sep='\t') #RI = np.array(loren(wave_number,data_1[1])).T RI = pre_treatment.pull_baseline_jx(data[1]) data = np.vstack([data, RI]) print("%d/%d" % (i, len(file_ob_list))) data = pd.DataFrame(data.T) file_names = np.array(file_names) w = "wave number" file_names = np.hstack([w, file_names]) #print(file_names) data.columns = file_names print(data) return data
def loren(w, r): r = pre_treatment.pull_baseline_jx(r) try: _, RI = peak_decomposition.my_predict_fit(w, r, 20) except: try: _, RI = peak_decomposition.my_predict_fit(w, r, 10) except: _, RI = peak_decomposition.my_predict_fit(w, r, 5) RI = pre_treatment.pull_baseline_jx(RI + 1000) RI = pd.DataFrame(RI) return RI