Example #1
0
    def run(self) -> (list, list):
        # the start node is only node in tree with id=0, cost=0, parent=None
        self.G.add_node(node_id=0, node_value=self.start_value, node_cost=0.0, inc_cost=0.0)
        self.result = False

        proj = Projection(f=self.manifold.y, J=self.manifold.J, step_size=self.proj_step_size)
        pbar = tqdm.tqdm(total=self.n_samples)
        for i in range(self.n_samples):
            pbar.update()
            if np.random.rand() < self.beta:
                q_target = self.goal_value
            else:
                q_target = self.task.sample()

            q_near, q_near_id = self.G.get_nearest_neighbor(node_value=q_target)
            q_new = self.steer(q_near, q_target)
            q_new_idx = self.G.node_count

            res, q_new = proj.project(q_new)
            if not res:
                continue

            extended = self.extend(q_from=q_near, q_from_id=q_near_id, q_to=q_new, q_to_id=q_new_idx)
            if extended:
                self.rewire(q_from=q_new, q_from_id=q_new_idx)

        pbar.close()
        print('')

        self.G.comp_opt_path(self.goal_value, self.conv_tol)
        opt_path = [self.G.V[idx].value for idx in self.G.path]
        return self.G.path, opt_path
Example #2
0
    def constrained_extend(self, G: Tree, q_from: np.ndarray, q_from_id: int,
                           q_to: np.ndarray) -> np.ndarray:
        q_s = q_from.copy()
        q_s_id = q_from_id
        q_s_old = q_s.copy()

        while True:
            if np.isclose(q_s, q_to).all():
                return q_s
            if np.linalg.norm(q_s - q_to) > np.linalg.norm(q_s_old - q_to):
                return q_s_old

            q_s_old = q_s.copy()
            q_s_old_id = q_s_id

            # step towards the target configuration
            q_s = self.steer(q_from=q_s, q_to=q_to)

            # project q_s onto nearest manifold
            h = [np.linalg.norm(m.y(q_s)) for m in self.task.manifolds]
            idx = np.argmin(h)

            if idx != G.V[q_s_id].aux:
                curr_manifold = self.task.manifolds[G.V[q_s_id].aux]
                next_manifold = self.task.manifolds[idx]
                joint_manifold = ManifoldStack([curr_manifold, next_manifold])
                joint_projector = Projection(joint_manifold.y,
                                             joint_manifold.J)
                res, q_s = joint_projector.project(q_s)
            else:
                res, q_s = self.manifold_projectors[idx].project(q_s)

            if res and not self.is_collision(q_s_old, q_s):
                inc_cost = np.linalg.norm(q_s - q_s_old)
                node_cost = G.V[q_s_old_id].cost + inc_cost
                q_s_id = G.node_count
                G.add_node(node_id=q_s_id,
                           node_value=q_s,
                           node_cost=node_cost,
                           inc_cost=inc_cost)
                G.add_edge(edge_id=G.edge_count,
                           node_a=q_s_old_id,
                           node_b=q_s_id)
                G.V[q_s_id].aux = idx
                if np.isclose(q_s, q_s_old).all():
                    return q_s
            else:
                return q_s_old
Example #3
0
    def __init__(self, task: Task, cfg: dict):
        self.name = "CBIRRT"
        self.n_manifolds = len(task.manifolds)
        self.task = task
        self.start = task.start
        self.n_samples = cfg['N']
        self.alpha = cfg['ALPHA']
        self.eps = cfg['EPS']
        self.collision_res = cfg['COLLISION_RES']
        self.d = task.d

        self.lim_lo = task.lim_lo
        self.lim_up = task.lim_up
        self.result = False
        self.goal = task.goal
        self.path = None
        self.path_id = None

        self.G_a = Tree(self.d, exact_nn=False)
        self.G_b = Tree(self.d, exact_nn=False)

        self.manifold_projectors = []
        for m in self.task.manifolds:
            self.manifold_projectors.append(Projection(f=m.y, J=m.J))

        # check if start point is on first manifold
        if not is_on_manifold(task.manifolds[0], task.start, self.eps):
            raise Exception(
                'The start point is not on the manifold h(start)= ' +
                str(task.manifolds[0].y(task.start)))

        # check if start point is in collision
        if self.task.is_collision_conf(task.start):
            raise Exception('The start point is in collision.')
Example #4
0
    def grow_tree(self,
                  curr_manifold: Manifold,
                  next_manifold: Manifold):
        curr_projector = Projection(f=curr_manifold.y, J=curr_manifold.J, step_size=self.proj_step_size)
        joint_manifold = ManifoldStack([curr_manifold, next_manifold])
        joint_projector = Projection(f=joint_manifold.y, J=joint_manifold.J, step_size=self.proj_step_size)

        pbar = tqdm.tqdm(total=self.n_samples)
        for i in range(self.n_samples):
            pbar.update()
            q_target = self.task.sample()
            q_near, q_near_id = self.G.get_nearest_neighbor(node_value=q_target)

            q_new = self.steer(q_near, q_near_id, q_target, curr_manifold, next_manifold)

            if q_new is None:
                continue

            # project q_new on current or next manifold
            on_next_manifold = False
            if np.linalg.norm(next_manifold.y(q_new)) < np.random.rand() * self.r_max:
                res, q_new_proj = joint_projector.project(q_new)
            else:
                res, q_new_proj = curr_projector.project(q_new)

            if not res:
                continue  # continue if projection was not successful

            # check if q_new_proj is on the next manifold
            if is_on_manifold(next_manifold, q_new_proj, self.eps):
                if len(self.V_goal) == 0:
                    on_next_manifold = True
                else:
                    q_proj_near = min(self.V_goal, key=lambda idx: np.linalg.norm(self.G.V[idx].value - q_new_proj))
                    if np.linalg.norm(self.G.V[q_proj_near].value - q_new_proj) > self.rho:
                        on_next_manifold = True
                    else:
                        continue  # continue if a node close to q_new_proj is already in the tree

            q_new_idx = self.G.node_count
            extended = self.extend(q_from=q_near, q_from_id=q_near_id, q_to=q_new_proj, q_to_id=q_new_idx)

            if extended:
                self.rewire(q_from=q_new_proj, q_from_id=q_new_idx)

                # add to V_goal if q_new is on the next manifold
                if on_next_manifold:
                    self.V_goal.append(q_new_idx)

        pbar.close()
        print('')
    def run(self) -> bool:
        curr_projectors = []
        next_projectors = []
        curr_manifolds = []
        next_manifolds = []
        # iterate over sequence of manifolds
        for n in range(self.n_manifolds - 1):
            print('######################################################')
            print('n', n)
            print('Active Manifold: ', self.task.manifolds[n].name)
            print('Target Manifold: ', self.task.manifolds[n + 1].name)

            curr_manifold = self.task.manifolds[n]
            next_manifold = self.task.manifolds[n + 1]
            joint_manifold = ManifoldStack([curr_manifold, next_manifold])

            # initiate manifold and projector sequence
            curr_manifolds += [curr_manifold]
            next_manifolds += [next_manifold]
            curr_projectors += [
                Projection(f=curr_manifold.y,
                           J=curr_manifold.J,
                           step_size=self.proj_step_size)
            ]
            next_projectors += [
                Projection(f=joint_manifold.y,
                           J=joint_manifold.J,
                           step_size=self.proj_step_size)
            ]

            if n < self.n_manifolds - 1:
                self.V_goals += [[]]

        self.G = Tree(self.d, exact_nn=False)
        self.G.add_node(node_id=0,
                        node_value=self.start,
                        node_cost=0.0,
                        inc_cost=0.0)
        self.G.V[0].aux = 0  # store manifold id for every node

        pbar = tqdm.tqdm(total=self.n_samples)
        for i in range(self.n_samples):
            pbar.update()
            q_target = self.task.sample()
            q_near, q_near_id = self.G.get_nearest_neighbor(
                node_value=q_target)
            manifold_id = self.G.V[q_near_id].aux

            if manifold_id >= self.n_manifolds - 1:
                continue  # do not extend goal nodes

            if is_on_manifold(self.task.manifolds[manifold_id + 1], q_near):
                # move node directly to next manifold
                self.G.V[q_near_id].aux += 1
                continue

            curr_manifold = curr_manifolds[manifold_id]
            next_manifold = next_manifolds[manifold_id]
            curr_projector = curr_projectors[manifold_id]
            joint_projector = next_projectors[manifold_id]
            q_new = self.steer(q_near, q_near_id, q_target, curr_manifold,
                               next_manifold)

            if q_new is None:
                continue

            # project q_new on current or next manifold
            on_next_manifold = False
            if np.linalg.norm(
                    next_manifold.y(q_new)) < np.random.rand() * self.r_max:
                res, q_new_proj = joint_projector.project(q_new)
            else:
                res, q_new_proj = curr_projector.project(q_new)

            if not res:
                continue  # continue if projection was unsuccessful

            # check if q_new_proj is on the next manifold
            if is_on_manifold(next_manifold, q_new_proj, self.eps):
                on_next_manifold = True
                if len(self.V_goals[manifold_id]) > 0:
                    q_proj_near = min(self.V_goals[manifold_id],
                                      key=lambda idx: np.linalg.norm(self.G.V[
                                          idx].value - q_new_proj))
                    if np.linalg.norm(self.G.V[q_proj_near].value -
                                      q_new_proj) < self.rho:
                        continue  # continue if a node close to q_new_proj is already in the tree

            q_new_idx = self.G.node_count
            extended = self.extend(q_from=q_near,
                                   q_from_id=q_near_id,
                                   q_to=q_new_proj,
                                   q_to_id=q_new_idx,
                                   manifold_id=manifold_id + on_next_manifold)

            if extended:
                self.rewire(q_from=q_new_proj, q_from_id=q_new_idx)

                if on_next_manifold:
                    # add to V_goal if q_new is on the next manifold
                    self.V_goals[manifold_id].append(q_new_idx)

        pbar.close()
        print('')
        if len(self.V_goals[-1]) == 0:
            return False

        opt_idx = min(self.V_goals[-1],
                      key=lambda idx: np.linalg.norm(self.G.V[idx].cost))
        opt_path_idx = self.G.comp_path(opt_idx)

        # split into individual path segments per manifold
        opt_path = []
        opt_path_m = []
        m = 0
        for idx in opt_path_idx:
            opt_path_m += [self.G.V[idx].value]
            if self.G.V[idx].aux != m:
                opt_path += [opt_path_m.copy()]
                opt_path_m = [self.G.V[idx].value]
                m += 1

        if len(opt_path) != self.n_manifolds - 1:
            return False

        self.path = opt_path
        self.path_idx = opt_path_idx
        return True
    def run(self) -> bool:
        # iterate over sequence of manifolds
        q_start = self.start.copy()
        cost = 0.0
        path = []
        for n in range(self.n_manifolds - 1):
            print('######################################################')
            print('n', n)
            print('Active Manifold: ', self.task.manifolds[n].name)
            print('Target Manifold: ', self.task.manifolds[n + 1].name)

            # sample a goal configuration with IK
            curr_manifold = self.task.manifolds[n]
            next_manifold = ManifoldStack(
                manifolds=[self.task.manifolds[n], self.task.manifolds[n + 1]])

            ik_proj = Projection(f=next_manifold.y, J=next_manifold.J)

            res_plan = False
            max_goals = 10
            iter_goals = 0
            while not res_plan:
                res_proj = False
                while not res_proj:
                    q_rand = self.task.sample()
                    res_proj, q_goal = ik_proj.project(q_rand)
                    if not self.task.is_valid_conf(q_goal):
                        res_proj = False
                    if self.task.is_collision_conf(q_goal):
                        res_proj = False

                # plan path to goal configuration with RRT*
                rrt_task = Task('empty')
                rrt_task.start = q_start
                rrt_task.goal = q_goal
                rrt_task.obstacles = self.task.obstacles
                planner = RRTStarManifold(rrt_task, curr_manifold, self.cfg)
                path_idx, opt_path = planner.run()
                if path_idx:
                    q_reached = planner.G.V[path_idx[-1]].value
                    res_plan = np.linalg.norm(q_reached - q_goal) < self.eps
                else:
                    res_plan = False

                if not res_plan:
                    iter_goals += 1

                if iter_goals == max_goals:
                    return False

            cost += planner.G.comp_opt_path(q_goal)
            path += [[planner.G.V[idx].value for idx in planner.G.path]]

            q_start = q_goal.copy()

            # store results for later evaluation
            self.G_list.append(planner.G)
            self.V_goal_list.append([0])

        self.path = path
        return True
Example #7
0
    def run(self) -> bool:
        # iterate over sequence of manifolds
        self.G = Tree(self.d, exact_nn=False)
        self.G.add_node(node_id=0,
                        node_value=self.start,
                        node_cost=0.0,
                        inc_cost=0.0)
        self.G.V[0].aux = 0  # store manifold id for every node
        self.G.V[0].path = []

        for n in range(100):
            node_id = self.G.sample_node()
            curr_manifold_id = self.G.V[node_id].aux
            next_manifold_id = curr_manifold_id + 1
            q_start = self.G.V[node_id].value

            if is_on_manifold(self.task.manifolds[next_manifold_id], q_start):
                # move node directly to next manifold
                self.G.V[node_id].aux += 1
                q_reached = q_start
            else:
                # sample a goal configuration with IK
                curr_manifold = self.task.manifolds[curr_manifold_id]
                next_manifold = ManifoldStack(manifolds=[
                    self.task.manifolds[curr_manifold_id],
                    self.task.manifolds[next_manifold_id]
                ])

                ik_proj = Projection(f=next_manifold.y, J=next_manifold.J)
                res_proj = False
                while not res_proj:
                    q_rand = self.task.sample()
                    res_proj, q_goal = ik_proj.project(q_rand)
                    if not self.task.is_valid_conf(q_goal):
                        res_proj = False
                    if self.task.is_collision_conf(q_goal):
                        res_proj = False

                # plan path to goal configuration with RRT*
                rrt_task = Task('empty')
                rrt_task.start = q_start
                rrt_task.goal = q_goal
                rrt_task.obstacles = self.task.obstacles
                planner = RRTStarManifold(task=rrt_task,
                                          manifold=curr_manifold,
                                          cfg=self.cfg)
                path_idx, opt_path = planner.run()

                result = False
                if path_idx:
                    q_reached = planner.G.V[path_idx[-1]].value
                    if np.linalg.norm(q_reached - q_goal) < self.eps:
                        result = True

                if not result:
                    continue

                cost = path_cost(opt_path)
                node_id_new = self.G.node_count
                self.G.add_node(node_id=node_id_new,
                                node_value=q_reached,
                                node_cost=self.G.V[node_id].cost + cost,
                                inc_cost=cost)
                self.G.V[node_id_new].aux = next_manifold_id
                self.G.V[node_id_new].path = opt_path
                self.G.add_edge(edge_id=self.G.edge_count,
                                node_a=node_id,
                                node_b=node_id_new)

            if next_manifold_id == self.n_manifolds - 1:
                self.G.comp_opt_path(q_reached, self.eps)
                opt_path = [self.G.V[idx].path for idx in self.G.path[1:]]
                self.path = opt_path
                return True

        return False