def run(self) -> (list, list): # the start node is only node in tree with id=0, cost=0, parent=None self.G.add_node(node_id=0, node_value=self.start_value, node_cost=0.0, inc_cost=0.0) self.result = False proj = Projection(f=self.manifold.y, J=self.manifold.J, step_size=self.proj_step_size) pbar = tqdm.tqdm(total=self.n_samples) for i in range(self.n_samples): pbar.update() if np.random.rand() < self.beta: q_target = self.goal_value else: q_target = self.task.sample() q_near, q_near_id = self.G.get_nearest_neighbor(node_value=q_target) q_new = self.steer(q_near, q_target) q_new_idx = self.G.node_count res, q_new = proj.project(q_new) if not res: continue extended = self.extend(q_from=q_near, q_from_id=q_near_id, q_to=q_new, q_to_id=q_new_idx) if extended: self.rewire(q_from=q_new, q_from_id=q_new_idx) pbar.close() print('') self.G.comp_opt_path(self.goal_value, self.conv_tol) opt_path = [self.G.V[idx].value for idx in self.G.path] return self.G.path, opt_path
def constrained_extend(self, G: Tree, q_from: np.ndarray, q_from_id: int, q_to: np.ndarray) -> np.ndarray: q_s = q_from.copy() q_s_id = q_from_id q_s_old = q_s.copy() while True: if np.isclose(q_s, q_to).all(): return q_s if np.linalg.norm(q_s - q_to) > np.linalg.norm(q_s_old - q_to): return q_s_old q_s_old = q_s.copy() q_s_old_id = q_s_id # step towards the target configuration q_s = self.steer(q_from=q_s, q_to=q_to) # project q_s onto nearest manifold h = [np.linalg.norm(m.y(q_s)) for m in self.task.manifolds] idx = np.argmin(h) if idx != G.V[q_s_id].aux: curr_manifold = self.task.manifolds[G.V[q_s_id].aux] next_manifold = self.task.manifolds[idx] joint_manifold = ManifoldStack([curr_manifold, next_manifold]) joint_projector = Projection(joint_manifold.y, joint_manifold.J) res, q_s = joint_projector.project(q_s) else: res, q_s = self.manifold_projectors[idx].project(q_s) if res and not self.is_collision(q_s_old, q_s): inc_cost = np.linalg.norm(q_s - q_s_old) node_cost = G.V[q_s_old_id].cost + inc_cost q_s_id = G.node_count G.add_node(node_id=q_s_id, node_value=q_s, node_cost=node_cost, inc_cost=inc_cost) G.add_edge(edge_id=G.edge_count, node_a=q_s_old_id, node_b=q_s_id) G.V[q_s_id].aux = idx if np.isclose(q_s, q_s_old).all(): return q_s else: return q_s_old
def __init__(self, task: Task, cfg: dict): self.name = "CBIRRT" self.n_manifolds = len(task.manifolds) self.task = task self.start = task.start self.n_samples = cfg['N'] self.alpha = cfg['ALPHA'] self.eps = cfg['EPS'] self.collision_res = cfg['COLLISION_RES'] self.d = task.d self.lim_lo = task.lim_lo self.lim_up = task.lim_up self.result = False self.goal = task.goal self.path = None self.path_id = None self.G_a = Tree(self.d, exact_nn=False) self.G_b = Tree(self.d, exact_nn=False) self.manifold_projectors = [] for m in self.task.manifolds: self.manifold_projectors.append(Projection(f=m.y, J=m.J)) # check if start point is on first manifold if not is_on_manifold(task.manifolds[0], task.start, self.eps): raise Exception( 'The start point is not on the manifold h(start)= ' + str(task.manifolds[0].y(task.start))) # check if start point is in collision if self.task.is_collision_conf(task.start): raise Exception('The start point is in collision.')
def grow_tree(self, curr_manifold: Manifold, next_manifold: Manifold): curr_projector = Projection(f=curr_manifold.y, J=curr_manifold.J, step_size=self.proj_step_size) joint_manifold = ManifoldStack([curr_manifold, next_manifold]) joint_projector = Projection(f=joint_manifold.y, J=joint_manifold.J, step_size=self.proj_step_size) pbar = tqdm.tqdm(total=self.n_samples) for i in range(self.n_samples): pbar.update() q_target = self.task.sample() q_near, q_near_id = self.G.get_nearest_neighbor(node_value=q_target) q_new = self.steer(q_near, q_near_id, q_target, curr_manifold, next_manifold) if q_new is None: continue # project q_new on current or next manifold on_next_manifold = False if np.linalg.norm(next_manifold.y(q_new)) < np.random.rand() * self.r_max: res, q_new_proj = joint_projector.project(q_new) else: res, q_new_proj = curr_projector.project(q_new) if not res: continue # continue if projection was not successful # check if q_new_proj is on the next manifold if is_on_manifold(next_manifold, q_new_proj, self.eps): if len(self.V_goal) == 0: on_next_manifold = True else: q_proj_near = min(self.V_goal, key=lambda idx: np.linalg.norm(self.G.V[idx].value - q_new_proj)) if np.linalg.norm(self.G.V[q_proj_near].value - q_new_proj) > self.rho: on_next_manifold = True else: continue # continue if a node close to q_new_proj is already in the tree q_new_idx = self.G.node_count extended = self.extend(q_from=q_near, q_from_id=q_near_id, q_to=q_new_proj, q_to_id=q_new_idx) if extended: self.rewire(q_from=q_new_proj, q_from_id=q_new_idx) # add to V_goal if q_new is on the next manifold if on_next_manifold: self.V_goal.append(q_new_idx) pbar.close() print('')
def run(self) -> bool: curr_projectors = [] next_projectors = [] curr_manifolds = [] next_manifolds = [] # iterate over sequence of manifolds for n in range(self.n_manifolds - 1): print('######################################################') print('n', n) print('Active Manifold: ', self.task.manifolds[n].name) print('Target Manifold: ', self.task.manifolds[n + 1].name) curr_manifold = self.task.manifolds[n] next_manifold = self.task.manifolds[n + 1] joint_manifold = ManifoldStack([curr_manifold, next_manifold]) # initiate manifold and projector sequence curr_manifolds += [curr_manifold] next_manifolds += [next_manifold] curr_projectors += [ Projection(f=curr_manifold.y, J=curr_manifold.J, step_size=self.proj_step_size) ] next_projectors += [ Projection(f=joint_manifold.y, J=joint_manifold.J, step_size=self.proj_step_size) ] if n < self.n_manifolds - 1: self.V_goals += [[]] self.G = Tree(self.d, exact_nn=False) self.G.add_node(node_id=0, node_value=self.start, node_cost=0.0, inc_cost=0.0) self.G.V[0].aux = 0 # store manifold id for every node pbar = tqdm.tqdm(total=self.n_samples) for i in range(self.n_samples): pbar.update() q_target = self.task.sample() q_near, q_near_id = self.G.get_nearest_neighbor( node_value=q_target) manifold_id = self.G.V[q_near_id].aux if manifold_id >= self.n_manifolds - 1: continue # do not extend goal nodes if is_on_manifold(self.task.manifolds[manifold_id + 1], q_near): # move node directly to next manifold self.G.V[q_near_id].aux += 1 continue curr_manifold = curr_manifolds[manifold_id] next_manifold = next_manifolds[manifold_id] curr_projector = curr_projectors[manifold_id] joint_projector = next_projectors[manifold_id] q_new = self.steer(q_near, q_near_id, q_target, curr_manifold, next_manifold) if q_new is None: continue # project q_new on current or next manifold on_next_manifold = False if np.linalg.norm( next_manifold.y(q_new)) < np.random.rand() * self.r_max: res, q_new_proj = joint_projector.project(q_new) else: res, q_new_proj = curr_projector.project(q_new) if not res: continue # continue if projection was unsuccessful # check if q_new_proj is on the next manifold if is_on_manifold(next_manifold, q_new_proj, self.eps): on_next_manifold = True if len(self.V_goals[manifold_id]) > 0: q_proj_near = min(self.V_goals[manifold_id], key=lambda idx: np.linalg.norm(self.G.V[ idx].value - q_new_proj)) if np.linalg.norm(self.G.V[q_proj_near].value - q_new_proj) < self.rho: continue # continue if a node close to q_new_proj is already in the tree q_new_idx = self.G.node_count extended = self.extend(q_from=q_near, q_from_id=q_near_id, q_to=q_new_proj, q_to_id=q_new_idx, manifold_id=manifold_id + on_next_manifold) if extended: self.rewire(q_from=q_new_proj, q_from_id=q_new_idx) if on_next_manifold: # add to V_goal if q_new is on the next manifold self.V_goals[manifold_id].append(q_new_idx) pbar.close() print('') if len(self.V_goals[-1]) == 0: return False opt_idx = min(self.V_goals[-1], key=lambda idx: np.linalg.norm(self.G.V[idx].cost)) opt_path_idx = self.G.comp_path(opt_idx) # split into individual path segments per manifold opt_path = [] opt_path_m = [] m = 0 for idx in opt_path_idx: opt_path_m += [self.G.V[idx].value] if self.G.V[idx].aux != m: opt_path += [opt_path_m.copy()] opt_path_m = [self.G.V[idx].value] m += 1 if len(opt_path) != self.n_manifolds - 1: return False self.path = opt_path self.path_idx = opt_path_idx return True
def run(self) -> bool: # iterate over sequence of manifolds q_start = self.start.copy() cost = 0.0 path = [] for n in range(self.n_manifolds - 1): print('######################################################') print('n', n) print('Active Manifold: ', self.task.manifolds[n].name) print('Target Manifold: ', self.task.manifolds[n + 1].name) # sample a goal configuration with IK curr_manifold = self.task.manifolds[n] next_manifold = ManifoldStack( manifolds=[self.task.manifolds[n], self.task.manifolds[n + 1]]) ik_proj = Projection(f=next_manifold.y, J=next_manifold.J) res_plan = False max_goals = 10 iter_goals = 0 while not res_plan: res_proj = False while not res_proj: q_rand = self.task.sample() res_proj, q_goal = ik_proj.project(q_rand) if not self.task.is_valid_conf(q_goal): res_proj = False if self.task.is_collision_conf(q_goal): res_proj = False # plan path to goal configuration with RRT* rrt_task = Task('empty') rrt_task.start = q_start rrt_task.goal = q_goal rrt_task.obstacles = self.task.obstacles planner = RRTStarManifold(rrt_task, curr_manifold, self.cfg) path_idx, opt_path = planner.run() if path_idx: q_reached = planner.G.V[path_idx[-1]].value res_plan = np.linalg.norm(q_reached - q_goal) < self.eps else: res_plan = False if not res_plan: iter_goals += 1 if iter_goals == max_goals: return False cost += planner.G.comp_opt_path(q_goal) path += [[planner.G.V[idx].value for idx in planner.G.path]] q_start = q_goal.copy() # store results for later evaluation self.G_list.append(planner.G) self.V_goal_list.append([0]) self.path = path return True
def run(self) -> bool: # iterate over sequence of manifolds self.G = Tree(self.d, exact_nn=False) self.G.add_node(node_id=0, node_value=self.start, node_cost=0.0, inc_cost=0.0) self.G.V[0].aux = 0 # store manifold id for every node self.G.V[0].path = [] for n in range(100): node_id = self.G.sample_node() curr_manifold_id = self.G.V[node_id].aux next_manifold_id = curr_manifold_id + 1 q_start = self.G.V[node_id].value if is_on_manifold(self.task.manifolds[next_manifold_id], q_start): # move node directly to next manifold self.G.V[node_id].aux += 1 q_reached = q_start else: # sample a goal configuration with IK curr_manifold = self.task.manifolds[curr_manifold_id] next_manifold = ManifoldStack(manifolds=[ self.task.manifolds[curr_manifold_id], self.task.manifolds[next_manifold_id] ]) ik_proj = Projection(f=next_manifold.y, J=next_manifold.J) res_proj = False while not res_proj: q_rand = self.task.sample() res_proj, q_goal = ik_proj.project(q_rand) if not self.task.is_valid_conf(q_goal): res_proj = False if self.task.is_collision_conf(q_goal): res_proj = False # plan path to goal configuration with RRT* rrt_task = Task('empty') rrt_task.start = q_start rrt_task.goal = q_goal rrt_task.obstacles = self.task.obstacles planner = RRTStarManifold(task=rrt_task, manifold=curr_manifold, cfg=self.cfg) path_idx, opt_path = planner.run() result = False if path_idx: q_reached = planner.G.V[path_idx[-1]].value if np.linalg.norm(q_reached - q_goal) < self.eps: result = True if not result: continue cost = path_cost(opt_path) node_id_new = self.G.node_count self.G.add_node(node_id=node_id_new, node_value=q_reached, node_cost=self.G.V[node_id].cost + cost, inc_cost=cost) self.G.V[node_id_new].aux = next_manifold_id self.G.V[node_id_new].path = opt_path self.G.add_edge(edge_id=self.G.edge_count, node_a=node_id, node_b=node_id_new) if next_manifold_id == self.n_manifolds - 1: self.G.comp_opt_path(q_reached, self.eps) opt_path = [self.G.V[idx].path for idx in self.G.path[1:]] self.path = opt_path return True return False