Example #1
0
def run_simulation(sim, params):
    print "Running Network ..."
    timer = Timer()
    timer.reset()
    sim.run(params['run_time'])
    simCPUtime = timer.elapsedTime()
    print "... The simulation took %s ms to run." % str(simCPUtime)
Example #2
0
def main_pyNN(parameters):
    timer = Timer()
    sim = import_module(parameters.simulator)
    timer.mark("import")

    sim.setup(threads=parameters.threads)
    timer.mark("setup")

    populations = {}
    for name, P in parameters.populations.parameters():
        populations[name] = sim.Population(P.n,
                                           getattr(sim,
                                                   P.celltype)(**P.params),
                                           label=name)
    timer.mark("build")

    if parameters.projections:
        projections = {}
        for name, P in parameters.projections.parameters():
            connector = getattr(sim, P.connector.type)(**P.connector.params)
            synapse_type = getattr(
                sim, P.synapse_type.type)(**P.synapse_type.params)
            projections[name] = sim.Projection(populations[P.pre],
                                               populations[P.post],
                                               connector,
                                               synapse_type,
                                               receptor_type=P.receptor_type,
                                               label=name)
        timer.mark("connect")

    if parameters.recording:
        for pop_name, to_record in parameters.recording.parameters():
            for var_name, n_record in to_record.items():
                populations[pop_name].sample(n_record).record(var_name)
        timer.mark("record")

    sim.run(parameters.sim_time)
    timer.mark("run")

    spike_counts = {}
    if parameters.recording:
        for pop_name in parameters.recording.names():
            block = populations[pop_name].get_data(
            )  # perhaps include some summary statistics in the data returned?
            spike_counts["spikes_%s" %
                         pop_name] = populations[pop_name].mean_spike_count()
        timer.mark("get_data")

    mpi_rank = sim.rank()
    num_processes = sim.num_processes()
    sim.end()

    data = dict(timer.marks)
    data.update(num_processes=num_processes)
    data.update(spike_counts)
    return mpi_rank, data
def test_callback(data_input):
    global message
    message = data_input.actual.positions
    msg_list = list(message)

    #msg_list[0] = int(message[0].encode('hex'),16)
    #for i in
    #msg_list = int(message.encode('hex'),16)

    #print('============= Received image data.',message)
    rospy.loginfo('=====received data %r', msg_list[0])
    timer = Timer()
    dt = 0.1
    p.setup(timestep=dt)  # 0.1ms

    pub = rospy.Publisher('/arm_controller/follow_joint_trajectory/goal',
                          FollowJointTrajectoryActionGoal,
                          queue_size=10)
    command = FollowJointTrajectoryActionGoal()
    command.header.stamp = rospy.Time.now()
    command.goal.trajectory.joint_names = ['elbow']
    point = JointTrajectoryPoint()
    point.positions = [rate_command / 10]
    point.time_from_start = rospy.Duration(1)
    command.goal.trajectory.points.append(point)
    pub.publish(command)
    rospy.loginfo('=====send command %r', command.goal.trajectory.points[0])

    print("now plotting the network---------------")
    rospy.loginfo('--------now plotting---------------')
    n_panels = sum(a.shape[1]
                   for a in pop_1_data.segments[0].analogsignalarrays) + 2
    plt.subplot(n_panels, 1, 1)
    plot_spiketrains(pop_1_data.segments[0])
    panel = 3
    for array in pop_1_data.segments[0].analogsignalarrays:
        for i in range(array.shape[1]):
            plt.subplot(n_panels, 1, panel)
            plot_signal(array, i, colour='bg'[panel % 2])
            panel += 1
    plt.xlabel("time (%s)" % array.times.units._dimensionality.string)
    plt.setp(plt.gca().get_xticklabels(), visible=True)  #
Example #4
0
def main_pynest(parameters):
    P = parameters
    assert P.sim_name == "pynest"
    timer = Timer()
    import nest
    timer.mark("import")

    nest.SetKernelStatus({"resolution": 0.1})
    timer.mark("setup")

    p = nest.Create("iaf_psc_alpha", n=P.n, params={"I_e": 1000.0})
    timer.mark("build")

    # todo: add recording and data retrieval
    nest.Simulate(P.sim_time)
    timer.mark("run")

    mpi_rank = nest.Rank()
    num_processes = nest.NumProcesses()

    data = P.as_dict()
    data.update(num_processes=num_processes, timings=timer.marks)
    return mpi_rank, data
def run_model(sim, **options):
    """
    Run a simulation using the parameters read from the file "I_f_curve.json"

    :param sim: the PyNN backend module to be used.
    :param options: should contain a keyword "simulator" which is the name of the PyNN backend module used.
    :return: a tuple (`data`, `times`) where `data` is a Neo Block containing the recorded spikes
             and `times` is a dict containing the time taken for different phases of the simulation.
    """
    
    import json
    from pyNN.utility import Timer

    timer = Timer()

    g = open("I_f_curve.json", 'r')
    d = json.load(g)
    
    N = d['param']['N']
    max_current = d['param']['max_current']
    tstop = d['param']['tstop']

    if options['simulator'] == "hardware.brainscales":
        hardware_preset = d['setup'].pop('hardware_preset', None)
        if hardware_preset:
            d['setup']['hardware'] = sim.hardwareSetup[hardware_preset]

    timer.start()
    sim.setup(**d['setup'])

    popcell = sim.Population(N, sim.IF_cond_exp, d['IF_cond_exp'])

    #current_source = []
    #for i in xrange(N):
    #    current_source.append(sim.DCSource(amplitude=(max_current*(i+1)/N)))
    #    popcell[i:(i+1)].inject(current_source[i])
    i_offset = max_current * (1 + np.arange(N))/N
    popcell.tset("i_offset", i_offset)

    if PYNN07:
        popcell.record()
    else:
        popcell.record('spikes')
        #popcell[0, 1, N-2, N-1].record('v')  # debug

    setup_time = timer.diff()
    sim.run(tstop)
    run_time = timer.diff()

    if PYNN07:
        spike_array = popcell.getSpikes()
        data = spike_array_to_neo(spike_array, popcell, tstop)
    else:
        data = popcell.get_data()

    sim.end()

    closing_time = timer.diff()
    times = {'setup_time': setup_time, 'run_time': run_time, 'closing_time': closing_time}

    return data, times
def do_run(seed=None):
    simulator_name = 'spiNNaker'

    timer = Timer()

    # === Define parameters =========================================

    parallel_safe = True

    n = 1500  # number of cells
    # number of excitatory cells:number of inhibitory cells
    r_ei = 4.0
    pconn = 0.02  # connection probability

    dt = 1  # (ms) simulation timestep
    tstop = 200  # (ms) simulaton duration
    delay = 1

    # Cell parameters
    area = 20000.  # (µm²)
    tau_m = 20.  # (ms)
    cm = 1.  # (µF/cm²)
    g_leak = 5e-5  # (S/cm²)
    e_leak = -49.  # (mV)
    v_thresh = -50.  # (mV)
    v_reset = -60.  # (mV)
    t_refrac = 5.  # (ms) (clamped at v_reset)
    # (mV) 'mean' membrane potential,  for calculating CUBA weights
    v_mean = -60.
    tau_exc = 5.  # (ms)
    tau_inh = 10.  # (ms)
    # (nS) #Those weights should be similar to the COBA weights
    g_exc = 0.27
    # (nS) # but the delpolarising drift should be taken into account
    g_inh = 4.5
    e_rev_exc = 0.  # (mV)
    e_rev_inh = -80.  # (mV)

    # === Calculate derived parameters ===============================

    area *= 1e-8  # convert to cm²
    cm *= area * 1000  # convert to nF
    r_m = 1e-6 / (g_leak * area)  # membrane resistance in MΩ
    assert tau_m == cm * r_m  # just to check

    # number of excitatory cells
    n_exc = int(round((n * r_ei / (1 + r_ei))))
    n_inh = n - n_exc  # number of inhibitory cells

    celltype = p.IF_curr_exp
    # (nA) weight of excitatory synapses
    w_exc = 1e-3 * g_exc * (e_rev_exc - v_mean)
    w_inh = 1e-3 * g_inh * (e_rev_inh - v_mean)  # (nA)
    assert w_exc > 0
    assert w_inh < 0

    # === Build the network ==========================================

    p.setup(timestep=dt, min_delay=delay, max_delay=delay)

    if simulator_name == 'spiNNaker':
        # this will set 100 neurons per core
        p.set_number_of_neurons_per_core(p.IF_curr_exp, 100)
        # this will set 50 neurons per core
        p.set_number_of_neurons_per_core(p.IF_cond_exp, 50)

    # node_id = 1
    # np = 1

    # host_name = socket.gethostname()

    cell_params = {'tau_m': tau_m, 'tau_syn_E': tau_exc, 'tau_syn_I': tau_inh,
                   'v_rest': e_leak, 'v_reset': v_reset, 'v_thresh': v_thresh,
                   'cm': cm, 'tau_refrac': t_refrac, 'i_offset': 0}

    timer.start()

    exc_cells = p.Population(n_exc, celltype, cell_params,
                             label="Excitatory_Cells")
    inh_cells = p.Population(n_inh, celltype, cell_params,
                             label="Inhibitory_Cells")
    rng = NumpyRNG(seed=seed, parallel_safe=parallel_safe)
    uniform_distr = RandomDistribution('uniform', [v_reset, v_thresh], rng=rng)
    exc_cells.initialize(v=uniform_distr)
    inh_cells.initialize(v=uniform_distr)

    exc_conn = p.FixedProbabilityConnector(pconn, rng=rng)
    synapse_exc = p.StaticSynapse(weight=w_exc, delay=delay)
    inh_conn = p.FixedProbabilityConnector(pconn, rng=rng)
    synapse_inh = p.StaticSynapse(weight=w_inh, delay=delay)

    connections = dict()
    connections['e2e'] = p.Projection(exc_cells, exc_cells, exc_conn,
                                      synapse_type=synapse_exc,
                                      receptor_type='excitatory')
    connections['e2i'] = p.Projection(exc_cells, inh_cells, exc_conn,
                                      synapse_type=synapse_exc,
                                      receptor_type='excitatory')
    connections['i2e'] = p.Projection(inh_cells, exc_cells, inh_conn,
                                      synapse_type=synapse_inh,
                                      receptor_type='inhibitory')
    connections['i2i'] = p.Projection(inh_cells, inh_cells, inh_conn,
                                      synapse_type=synapse_inh,
                                      receptor_type='inhibitory')

    # === Setup recording ==============================
    exc_cells.record("spikes")

    # === Run simulation ================================
    p.run(tstop)

    exc_spikes = exc_cells.get_data("spikes")

    exc_cells.write_data(neo_path, "spikes")

    p.end()

    return exc_spikes
Example #7
0
    def test_va_benchmark(self):
        try:
            simulator_name = 'spiNNaker'

            timer = Timer()

            # === Define parameters =========================================

            rngseed = 98766987
            parallel_safe = True

            n = 1500  # number of cells
            # number of excitatory cells:number of inhibitory cells
            r_ei = 4.0
            pconn = 0.02  # connection probability

            dt = 0.1  # (ms) simulation timestep
            tstop = 200  # (ms) simulaton duration
            delay = 1

            # Cell parameters
            area = 20000.  # (µm²)
            tau_m = 20.  # (ms)
            cm = 1.  # (µF/cm²)
            g_leak = 5e-5  # (S/cm²)
            e_leak = -49.  # (mV)
            v_thresh = -50.  # (mV)
            v_reset = -60.  # (mV)
            t_refrac = 5.  # (ms) (clamped at v_reset)
            # (mV) 'mean' membrane potential,  for calculating CUBA weights
            v_mean = -60.
            tau_exc = 5.  # (ms)
            tau_inh = 10.  # (ms)
            # (nS) #Those weights should be similar to the COBA weights
            g_exc = 0.27
            # (nS) # but the delpolarising drift should be taken into account
            g_inh = 4.5
            e_rev_exc = 0.  # (mV)
            e_rev_inh = -80.  # (mV)

            # === Calculate derived parameters ===============================

            area *= 1e-8  # convert to cm²
            cm *= area * 1000  # convert to nF
            r_m = 1e-6 / (g_leak * area)  # membrane resistance in MΩ
            assert tau_m == cm * r_m  # just to check

            # number of excitatory cells
            n_exc = int(round((n * r_ei / (1 + r_ei))))
            n_inh = n - n_exc  # number of inhibitory cells

            print n_exc, n_inh

            celltype = p.IF_curr_exp
            # (nA) weight of excitatory synapses
            w_exc = 1e-3 * g_exc * (e_rev_exc - v_mean)
            w_inh = 1e-3 * g_inh * (e_rev_inh - v_mean)  # (nA)
            assert w_exc > 0
            assert w_inh < 0

            # === Build the network ==========================================

            p.setup(timestep=dt, min_delay=delay, max_delay=delay)

            if simulator_name == 'spiNNaker':
                # this will set 100 neurons per core
                p.set_number_of_neurons_per_core('IF_curr_exp', 100)
                # this will set 50 neurons per core
                p.set_number_of_neurons_per_core('IF_cond_exp', 50)

            node_id = 1
            np = 1

            host_name = socket.gethostname()
            print "Host #%d is on %s" % (np, host_name)

            cell_params = {
                'tau_m': tau_m,
                'tau_syn_E': tau_exc,
                'tau_syn_I': tau_inh,
                'v_rest': e_leak,
                'v_reset': v_reset,
                'v_thresh': v_thresh,
                'cm': cm,
                'tau_refrac': t_refrac,
                'i_offset': 0
            }

            print cell_params

            timer.start()

            print "%s Creating cell populations..." % node_id
            exc_cells = p.Population(n_exc,
                                     celltype,
                                     cell_params,
                                     label="Excitatory_Cells")
            inh_cells = p.Population(n_inh,
                                     celltype,
                                     cell_params,
                                     label="Inhibitory_Cells")
            p.NativeRNG(12345)

            print "%s Initialising membrane potential to random values..." \
                  % node_id
            rng = NumpyRNG(seed=rngseed, parallel_safe=parallel_safe)
            uniform_distr = RandomDistribution('uniform', [v_reset, v_thresh],
                                               rng=rng)
            exc_cells.initialize('v', uniform_distr)
            inh_cells.initialize('v', uniform_distr)

            print "%s Connecting populations..." % node_id
            exc_conn = p.FixedProbabilityConnector(pconn,
                                                   weights=w_exc,
                                                   delays=delay)
            inh_conn = p.FixedProbabilityConnector(pconn,
                                                   weights=w_inh,
                                                   delays=delay)

            connections = dict()
            connections['e2e'] = p.Projection(exc_cells,
                                              exc_cells,
                                              exc_conn,
                                              target='excitatory',
                                              rng=rng)
            connections['e2i'] = p.Projection(exc_cells,
                                              inh_cells,
                                              exc_conn,
                                              target='excitatory',
                                              rng=rng)
            connections['i2e'] = p.Projection(inh_cells,
                                              exc_cells,
                                              inh_conn,
                                              target='inhibitory',
                                              rng=rng)
            connections['i2i'] = p.Projection(inh_cells,
                                              inh_cells,
                                              inh_conn,
                                              target='inhibitory',
                                              rng=rng)

            # === Setup recording ==============================
            print "%s Setting up recording..." % node_id
            exc_cells.record()

            # === Run simulation ================================
            print "%d Running simulation..." % node_id

            print "timings: number of neurons:", n
            print "timings: number of synapses:", n * n * pconn

            p.run(tstop)

            exc_spikes = exc_cells.getSpikes()
            print len(exc_spikes)

            current_file_path = os.path.dirname(os.path.abspath(__file__))
            current_file_path = os.path.join(current_file_path, "spikes.data")
            exc_cells.printSpikes(current_file_path)
            pre_recorded_spikes = p.utility_calls.read_spikes_from_file(
                current_file_path, 0, n_exc, 0, tstop)

            for spike_element, read_element in zip(exc_spikes,
                                                   pre_recorded_spikes):
                self.assertEqual(round(spike_element[0], 1),
                                 round(read_element[0], 1))
                self.assertEqual(round(spike_element[1], 1),
                                 round(read_element[1], 1))

            p.end()


# System intentional overload so may error
        except SpinnmanTimeoutException as ex:
            raise SkipTest(ex)
Example #8
0
def test(cases=[1]):

    sp = Space(periodic_boundaries=((0, 1), (0, 1), None))
    safe = False
    verbose = True
    autapse = False
    parallel_safe = True
    render = True

    for case in cases:
        #w = RandomDistribution('uniform', (0,1))
        w = "0.2 + d/0.2"
        #w = 0.1
        #w = lambda dist : 0.1 + numpy.random.rand(len(dist[0]))*sqrt(dist[0]**2 + dist[1]**2)

        #delay = RandomDistribution('uniform', (0.1,5.))
        delay = "0.1 + d/0.2"
        #delay = 0.1
        #delay = lambda distances : 0.1 + numpy.random.rand(len(distances))*distances

        d_expression = "d < 0.1"
        #d_expression = "(d[0] < 0.05) & (d[1] < 0.05)"
        #d_expression = "(d[0]/(0.05**2) + d[1]/(0.1**2)) < 100*numpy.random.rand()"

        timer = Timer()
        np = num_processes()
        timer.start()
        if case is 1:
            conn = DistanceDependentProbabilityConnector(
                d_expression,
                delays=delay,
                weights=w,
                space=sp,
                safe=safe,
                verbose=verbose,
                allow_self_connections=autapse)
            fig_name = "DistanceDependent_%s_np_%d.png" % (simulator_name, np)
        elif case is 2:
            conn = FixedProbabilityConnector(0.05,
                                             weights=w,
                                             delays=delay,
                                             space=sp,
                                             safe=safe,
                                             verbose=verbose,
                                             allow_self_connections=autapse)
            fig_name = "FixedProbability_%s_np_%d.png" % (simulator_name, np)
        elif case is 3:
            conn = AllToAllConnector(delays=delay,
                                     weights=w,
                                     space=sp,
                                     safe=safe,
                                     verbose=verbose,
                                     allow_self_connections=autapse)
            fig_name = "AllToAll_%s_np_%d.png" % (simulator_name, np)
        elif case is 4:
            conn = FixedNumberPostConnector(50,
                                            weights=w,
                                            delays=delay,
                                            space=sp,
                                            safe=safe,
                                            verbose=verbose,
                                            allow_self_connections=autapse)
            fig_name = "FixedNumberPost_%s_np_%d.png" % (simulator_name, np)
        elif case is 5:
            conn = FixedNumberPreConnector(50,
                                           weights=w,
                                           delays=delay,
                                           space=sp,
                                           safe=safe,
                                           verbose=verbose,
                                           allow_self_connections=autapse)
            fig_name = "FixedNumberPre_%s_np_%d.png" % (simulator_name, np)
        elif case is 6:
            conn = OneToOneConnector(safe=safe,
                                     weights=w,
                                     delays=delay,
                                     verbose=verbose)
            fig_name = "OneToOne_%s_np_%d.png" % (simulator_name, np)
        elif case is 7:
            conn = FromFileConnector('connections.dat',
                                     safe=safe,
                                     verbose=verbose)
            fig_name = "FromFile_%s_np_%d.png" % (simulator_name, np)
        elif case is 8:
            conn = SmallWorldConnector(degree=0.1,
                                       rewiring=0.,
                                       weights=w,
                                       delays=delay,
                                       safe=safe,
                                       verbose=verbose,
                                       allow_self_connections=autapse,
                                       space=sp)
            fig_name = "SmallWorld_%s_np_%d.png" % (simulator_name, np)

        print "Generating data for %s" % fig_name
        rng = NumpyRNG(23434, num_processes=np, parallel_safe=parallel_safe)
        prj = Projection(x, x, conn, rng=rng)

        simulation_time = timer.elapsedTime()
        print "Building time", simulation_time
        print "Nb synapses built", len(prj)

        if render:
            if not (os.path.isdir('Results')):
                os.mkdir('Results')

            print "Saving Positions...."
            x.savePositions('Results/positions.dat')

            print "Saving Connections...."
            prj.saveConnections('Results/connections.dat',
                                compatible_output=False)

        if node_id == 0 and render:
            figure()
            print "Generating and saving %s" % fig_name
            positions = numpy.loadtxt('Results/positions.dat')
            connections = numpy.loadtxt('Results/connections.dat')
            positions = positions[numpy.argsort(positions[:, 0])]
            idx_pre = (connections[:, 0] - x.first_id).astype(int)
            idx_post = (connections[:, 1] - x.first_id).astype(int)
            d = distances(positions[idx_pre, 1:3], positions[idx_post, 1:3], 1)
            subplot(231)
            title('Cells positions')
            plot(positions[:, 1], positions[:, 2], '.')
            subplot(232)
            title('Weights distribution')
            hist(connections[:, 2], 50)
            subplot(233)
            title('Delay distribution')
            hist(connections[:, 3], 50)
            subplot(234)
            ids = numpy.random.permutation(numpy.unique(positions[:, 0]))[0:6]
            colors = ['k', 'r', 'b', 'g', 'c', 'y']
            for count, cell in enumerate(ids):
                draw_rf(cell, positions, connections, colors[count])
            subplot(235)
            plot(d, connections[:, 2], '.')

            subplot(236)
            plot(d, connections[:, 3], '.')
            savefig("Results/" + fig_name)
            os.remove('Results/connections.dat')
            os.remove('Results/positions.dat')
Example #9
0
def test(cases=[1]):

    sp = Space(periodic_boundaries=((0, 1), (0, 1), None), axes='xy')
    safe = False
    callback = progress_bar.set_level
    autapse = False
    parallel_safe = True
    render = True
    to_file = True

    for case in cases:
        #w = RandomDistribution('uniform', (0,1))
        w = "0.2 + d/0.2"
        #w = 0.1
        #w = lambda dist : 0.1 + numpy.random.rand(len(dist[0]))*sqrt(dist[0]**2 + dist[1]**2)

        #delay = RandomDistribution('uniform', (0.1,5.))
        #delay = "0.1 + d/0.2"
        delay = 0.1
        #delay = lambda distances : 0.1 + numpy.random.rand(len(distances))*distances

        d_expression = "exp(-d**2/(2*0.1**2))"
        #d_expression = "(d[0] < 0.05) & (d[1] < 0.05)"
        #d_expression = "(d[0]/(0.05**2) + d[1]/(0.1**2)) < 100*numpy.random.rand()"

        timer = Timer()
        np = num_processes()
        timer.start()

        synapse = StaticSynapse(weight=w, delay=delay)
        rng = NumpyRNG(23434, parallel_safe=parallel_safe)

        if case is 1:
            conn = DistanceDependentProbabilityConnector(
                d_expression,
                safe=safe,
                callback=callback,
                allow_self_connections=autapse,
                rng=rng)
            fig_name = "DistanceDependent_%s_np_%d.png" % (simulator_name, np)
        elif case is 2:
            conn = FixedProbabilityConnector(0.02,
                                             safe=safe,
                                             callback=callback,
                                             allow_self_connections=autapse,
                                             rng=rng)
            fig_name = "FixedProbability_%s_np_%d.png" % (simulator_name, np)
        elif case is 3:
            conn = AllToAllConnector(delays=delay,
                                     safe=safe,
                                     callback=callback,
                                     allow_self_connections=autapse)
            fig_name = "AllToAll_%s_np_%d.png" % (simulator_name, np)
        elif case is 4:
            conn = FixedNumberPostConnector(50,
                                            safe=safe,
                                            callback=callback,
                                            allow_self_connections=autapse,
                                            rng=rng)
            fig_name = "FixedNumberPost_%s_np_%d.png" % (simulator_name, np)
        elif case is 5:
            conn = FixedNumberPreConnector(50,
                                           safe=safe,
                                           callback=callback,
                                           allow_self_connections=autapse,
                                           rng=rng)
            fig_name = "FixedNumberPre_%s_np_%d.png" % (simulator_name, np)
        elif case is 6:
            conn = OneToOneConnector(safe=safe, callback=callback)
            fig_name = "OneToOne_%s_np_%d.png" % (simulator_name, np)
        elif case is 7:
            conn = FromFileConnector(files.NumpyBinaryFile(
                'Results/connections.dat', mode='r'),
                                     safe=safe,
                                     callback=callback,
                                     distributed=True)
            fig_name = "FromFile_%s_np_%d.png" % (simulator_name, np)
        elif case is 8:
            conn = SmallWorldConnector(degree=0.1,
                                       rewiring=0.,
                                       safe=safe,
                                       callback=callback,
                                       allow_self_connections=autapse)
            fig_name = "SmallWorld_%s_np_%d.png" % (simulator_name, np)

        print "Generating data for %s" % fig_name

        prj = Projection(x, x, conn, synapse, space=sp)

        mytime = timer.diff()
        print "Time to connect the cell population:", mytime, 's'
        print "Nb synapses built", prj.size()

        if to_file:
            if not (os.path.isdir('Results')):
                os.mkdir('Results')
            print "Saving Connections...."
            prj.save('all',
                     files.NumpyBinaryFile('Results/connections.dat',
                                           mode='w'),
                     gather=True)

        mytime = timer.diff()
        print "Time to save the projection:", mytime, 's'

        if render and to_file:
            print "Saving Positions...."
            x.save_positions('Results/positions.dat')
        end()

        if node_id == 0 and render and to_file:
            figure()
            print "Generating and saving %s" % fig_name
            positions = numpy.loadtxt('Results/positions.dat')

            positions[:, 0] -= positions[:, 0].min()
            connections = files.NumpyBinaryFile('Results/connections.dat',
                                                mode='r').read()
            print positions.shape, connections.shape
            connections[:, 0] -= connections[:, 0].min()
            connections[:, 1] -= connections[:, 1].min()
            idx_pre = connections[:, 0].astype(int)
            idx_post = connections[:, 1].astype(int)
            d = distances(positions[idx_pre, 1:3], positions[idx_post, 1:3], 1)
            subplot(231)
            title('Cells positions')
            plot(positions[:, 1], positions[:, 2], '.')
            subplot(232)
            title('Weights distribution')
            hist(connections[:, 2], 50)
            subplot(233)
            title('Delay distribution')
            hist(connections[:, 3], 50)
            subplot(234)
            numpy.random.seed(74562)
            ids = numpy.random.permutation(positions[:, 0])[0:6]
            colors = ['k', 'r', 'b', 'g', 'c', 'y']
            for count, cell in enumerate(ids):
                draw_rf(cell, positions, connections, colors[count])
            subplot(235)
            plot(d, connections[:, 2], '.')

            subplot(236)
            plot(d, connections[:, 3], '.')
            savefig("Results/" + fig_name)
            #os.remove('Results/connections.dat')
            #os.remove('Results/positions.dat')
            show()
Example #10
0
def run_retina(params):
    """Run the retina using the specified parameters."""

    print "Setting up simulation"
    timer = Timer()
    timer.start()  # start timer on construction
    pyNN.setup(timestep=params['dt'],
               max_delay=params['syn_delay'],
               threads=params['threads'],
               rng_seeds=params['kernelseeds'])

    N = params['N']
    phr_ON = pyNN.Population((N, N), pyNN.native_cell_type('dc_generator')())
    phr_OFF = pyNN.Population((N, N), pyNN.native_cell_type('dc_generator')())
    noise_ON = pyNN.Population(
        (N, N),
        pyNN.native_cell_type('noise_generator')(mean=0.0,
                                                 std=params['noise_std']))
    noise_OFF = pyNN.Population(
        (N, N),
        pyNN.native_cell_type('noise_generator')(mean=0.0,
                                                 std=params['noise_std']))

    phr_ON.set(start=params['simtime'] / 4,
               stop=params['simtime'] / 4 * 3,
               amplitude=params['amplitude'] * params['snr'])
    phr_OFF.set(start=params['simtime'] / 4,
                stop=params['simtime'] / 4 * 3,
                amplitude=-params['amplitude'] * params['snr'])

    # target ON and OFF populations
    v_init = params['parameters_gc'].pop('Vinit')
    out_ON = pyNN.Population((N, N),
                             pyNN.native_cell_type('iaf_cond_exp_sfa_rr')(
                                 **params['parameters_gc']))
    out_OFF = pyNN.Population((N, N),
                              pyNN.native_cell_type('iaf_cond_exp_sfa_rr')(
                                  **params['parameters_gc']))
    out_ON.initialize(v=v_init)
    out_OFF.initialize(v=v_init)

    #print "Connecting the network"

    retina_proj_ON = pyNN.Projection(phr_ON, out_ON, pyNN.OneToOneConnector())
    retina_proj_ON.set(weight=params['weight'])
    retina_proj_OFF = pyNN.Projection(phr_OFF, out_OFF,
                                      pyNN.OneToOneConnector())
    retina_proj_OFF.set(weight=params['weight'])

    noise_proj_ON = pyNN.Projection(noise_ON, out_ON, pyNN.OneToOneConnector())
    noise_proj_ON.set(weight=params['weight'])
    noise_proj_OFF = pyNN.Projection(noise_OFF, out_OFF,
                                     pyNN.OneToOneConnector())
    noise_proj_OFF.set(weight=params['weight'])

    out_ON.record('spikes')
    out_OFF.record('spikes')

    # reads out time used for building
    buildCPUTime = timer.elapsedTime()

    print "Running simulation"

    timer.start()  # start timer on construction
    pyNN.run(params['simtime'])
    simCPUTime = timer.elapsedTime()

    out_ON_DATA = out_ON.get_data().segments[0]
    out_OFF_DATA = out_OFF.get_data().segments[0]

    print "\nRetina Network Simulation:"
    print(params['description'])
    print "Number of Neurons : ", N**2
    print "Output rate  (ON) : ", out_ON.mean_spike_count(), \
        "spikes/neuron in ", params['simtime'], "ms"
    print "Output rate (OFF) : ", out_OFF.mean_spike_count(), \
        "spikes/neuron in ", params['simtime'], "ms"
    print "Build time        : ", buildCPUTime, "s"
    print "Simulation time   : ", simCPUTime, "s"

    return out_ON_DATA, out_OFF_DATA
def callback(data_input):

    #====================================================================
    # Unpacking the Joint Angle Message
    #====================================================================
    global message
    message = data_input.degree
    rospy.loginfo('=====> received joint angle in degree %r', message)
    print message

    if type(message) != int:
    	input_rates = list(message)
	n_input_neurons = len(input_rates)  
    else:
	input_rates = message
	n_input_neurons = 1
	

    #msg_list= [int(msg.encode('hex'),16) for msg in message]
    

    timer = Timer()
    dt = 0.1
    p.setup(timestep=dt) # 0.1ms


    #====================================================================
    # Defining the LSM
    #====================================================================

    n_res=2000
    w_exc_b=0.2
    w_inh_b=-0.8
    rout_w_exc=20
    rout_w_inh=-80

    n_readout_neurons   = 2
    n_reservoir_neurons = n_res
    n_res = n_reservoir_neurons
    exc_rate            = 0.8 # percentage of excitatory neurons in reservoir

    n_exc = int(round(n_reservoir_neurons*exc_rate))
    n_inh = n_reservoir_neurons-n_exc
    izh_celltype = p.native_cell_type('izhikevich')
    if_celltype = p.IF_curr_exp
    celltype = if_celltype
    
    spike_source = p.native_cell_type('poisson_generator')
    inp_pop=p.Population(n_input_neurons*10,spike_source,{'rate':input_rates})
    
    exc_cells = p.Population(n_exc, celltype, label="Excitatory_Cells")
    inh_cells = p.Population(n_inh, celltype, label="Inhibitory_Cells")

    # initialize with a uniform random distributin
    # use seeding for reproducability
    rngseed = 98766987
    parallel_safe = True
    rng = NumpyRNG(seed=rngseed, parallel_safe=parallel_safe)

    unifDistr = RandomDistribution('uniform', (-70,-65), rng=rng)
    inh_cells.initialize('V_m',unifDistr)
    exc_cells.initialize('V_m',unifDistr)
    
    readout_neurons = p.Population(2, celltype, label="readout_neuron")
    
    inp_weight=3.
    inp_delay =1

    inp_weight_distr = RandomDistribution('normal', [inp_weight, 1e-3], rng=rng)

    # connect each input neuron to 30% of the reservoir neurons
    inp_conn = p.FixedProbabilityConnector(p_connect=0.3,weights =inp_weight_distr, delays=inp_delay)

    connections = {}
    connections['inp2e'] = p.Projection(inp_pop, exc_cells, inp_conn)
    connections['inp2i'] = p.Projection(inp_pop, inh_cells, inp_conn)

    pconn = 0.01      # sparse connection probability

    # scale the weights w.r.t. the network to keep it stable
    w_exc = w_exc_b/np.sqrt(n_res)      # nA
    w_inh = w_inh_b/np.sqrt(n_res)      # nA
    
    delay_exc = 1      # defines how long (ms) the synapse takes for transmission
    delay_inh = 1

    weight_distr_exc = RandomDistribution('normal', [w_exc, 1/n_res], rng=rng)
    weight_distr_inh = RandomDistribution('normal', [w_inh, 1/n_res], rng=rng)
    exc_conn = p.FixedProbabilityConnector(pconn, weights=weight_distr_exc, delays=delay_exc)
    inh_conn = p.FixedProbabilityConnector(pconn, weights=weight_distr_inh, delays=delay_inh)

    connections['e2e'] = p.Projection(exc_cells, exc_cells, exc_conn, target='excitatory')
    connections['e2i'] = p.Projection(exc_cells, inh_cells, exc_conn, target='excitatory')
    connections['i2e'] = p.Projection(inh_cells, exc_cells, inh_conn, target='inhibitory')
    connections['i2i'] = p.Projection(inh_cells, inh_cells, inh_conn, target='inhibitory')
    
    
    
    rout_conn_exc = p.AllToAllConnector(weights=rout_w_exc, delays=delay_exc)
    rout_conn_inh = p.AllToAllConnector(weights=rout_w_inh, delays=delay_exc)

    
    

    connections['e2rout'] = p.Projection(exc_cells, readout_neurons, rout_conn_exc, target='excitatory')
    connections['i2rout'] = p.Projection(inh_cells, readout_neurons, rout_conn_inh, target='inhibitory')
    
    readout_neurons.record()
    exc_cells.record()
    inh_cells.record()
    inp_pop.record()
    
    
    p.run(20)

    r_spikes = readout_neurons.getSpikes()
    exc_spikes = exc_cells.getSpikes()
    inh_spikes = inh_cells.getSpikes()
    inp_spikes = inp_pop.getSpikes()

    rospy.loginfo('=====> shape of r_spikes %r', np.shape(r_spikes))

    #====================================================================
    # Compute Readout Spike Rates
    #====================================================================
    
  
    alpha_rates = alpha_decoding(r_spikes,dt)
    mean_rates  = mean_decoding(r_spikes,dt)

    #====================================================================
    # Publish Readout Rates
    #====================================================================

    # TODO: error handling if r_spikes is empty
    pub = rospy.Publisher('/alpha_readout_rates', Pop_List, queue_size=10)
    alpha_readout_rates = Pop_List
    alpha_readout_rates = alpha_rates
    pub.publish(alpha_readout_rates)

    pub = rospy.Publisher('/mean_readout_rates', Pop_List, queue_size=10)
    mean_readout_rates = Pop_List
    mean_readout_rates = mean_rates
    pub.publish(mean_readout_rates)
Example #12
0
def run_model(sim, **options):
    """
    Run a simulation using the parameters read from the file "spike_train_statistics.json"

    :param sim: the PyNN backend module to be used.
    :param options: should contain a keyword "simulator" which is the name of the PyNN backend module used.
    :return: a tuple (`data`, `times`) where `data` is a Neo Block containing the recorded spikes
             and `times` is a dict containing the time taken for different phases of the simulation.
    """

    import json
    from pyNN.utility import Timer

    print("Running")

    timer = Timer()

    g = open("spike_train_statistics.json", 'r')
    d = json.load(g)

    N = d['param']['N']
    max_rate = d['param']['max_rate']
    tstop = d['param']['tstop']
    d['SpikeSourcePoisson'] = {
        "duration": tstop
    }

    if options['simulator'] == "hardware.brainscales":
        hardware_preset = d['setup'].pop('hardware_preset', None)
        if hardware_preset:
            d['setup']['hardware'] = sim.hardwareSetup[hardware_preset]
        d['SpikeSourcePoisson']['random'] = True
        place = mapper.place()

    timer.start()
    sim.setup(**d['setup'])

    spike_sources = sim.Population(N, sim.SpikeSourcePoisson, d['SpikeSourcePoisson'])
    delta_rate = max_rate/N
    rates = numpy.linspace(delta_rate, max_rate, N)
    print("Firing rates: %s" % rates)
    if PYNN07:
        spike_sources.tset("rate", rates)
    else:
        spike_sources.set(rate=rates)

    if options['simulator'] == "hardware.brainscales":
        for i, spike_source in enumerate(spike_sources):
            place.to(spike_source, hicann=i//8, neuron=i%64)
        place.commit()

    if PYNN07:
        spike_sources.record()
    else:
        spike_sources.record('spikes')

    setup_time = timer.diff()
    sim.run(tstop)
    run_time = timer.diff()

    if PYNN07:
        spike_array = spike_sources.getSpikes()
        data = spike_array_to_neo(spike_array, spike_sources, tstop)
    else:
        data = spike_sources.get_data()

    sim.end()

    closing_time = timer.diff()
    times = {'setup_time': setup_time, 'run_time': run_time, 'closing_time': closing_time}

    return data, times
Example #13
0
    def run(self, params, verbose=True):
        """
        params are the parameters to use

        """
        tmpdir = tempfile.mkdtemp()
        myTimer = Timer()
        # === Build the network ========================================================
        if verbose: print "Setting up simulation"
        myTimer.start()  # start timer on construction
        sim.setup(timestep=params['dt'], max_delay=params['syn_delay'])
        N = params['N']
        #dc_generator
        phr_ON = sim.Population((N, ), 'dc_generator')
        phr_OFF = sim.Population((N, ), 'dc_generator')

        for factor, phr in [(-params['snr'], phr_OFF),
                            (params['snr'], phr_ON)]:
            phr.tset('amplitude', params['amplitude'] * factor)
            phr.set({
                'start': params['simtime'] / 4,
                'stop': params['simtime'] / 4 * 3
            })

        # internal noise model (see benchmark_noise)
        noise_ON = sim.Population((N, ), 'noise_generator', {
            'mean': 0.,
            'std': params['noise_std']
        })
        noise_OFF = sim.Population((N, ), 'noise_generator', {
            'mean': 0.,
            'std': params['noise_std']
        })

        # target ON and OFF populations (what about a tridimensional Population?)
        out_ON = sim.Population(
            (N, ), sim.IF_curr_alpha
        )  #'IF_cond_alpha) #iaf_sfa_neuron')# EIF_cond_alpha_isfa_ista, IF_cond_exp_gsfa_grr,sim.IF_cond_alpha)#'iaf_sfa_neuron',params['parameters_gc'])#'iaf_cond_neuron')# IF_cond_alpha) #
        out_OFF = sim.Population(
            (N, ), sim.IF_curr_alpha
        )  #'IF_cond_alpha) #IF_curr_alpha)#'iaf_sfa_neuron')#sim.IF_curr_alpha)#,params['parameters_gc'])

        # initialize membrane potential TODO: and conductances?
        from pyNN.random import RandomDistribution, NumpyRNG
        rng = NumpyRNG(seed=params['kernelseed'])
        vinit_distr = RandomDistribution(distribution='uniform',
                                         parameters=[-70, -55],
                                         rng=rng)
        for out_ in [out_ON, out_OFF]:
            out_.randomInit(vinit_distr)

        retina_proj_ON = sim.Projection(phr_ON, out_ON,
                                        sim.OneToOneConnector())
        retina_proj_ON.setWeights(params['weight'])
        # TODO fix setWeight, add setDelays to 10 ms (relative to stimulus onset)
        retina_proj_OFF = sim.Projection(phr_OFF, out_OFF,
                                         sim.OneToOneConnector())
        retina_proj_OFF.setWeights(params['weight'])

        noise_proj_ON = sim.Projection(noise_ON, out_ON,
                                       sim.OneToOneConnector())
        noise_proj_ON.setWeights(params['weight'])
        noise_proj_OFF = sim.Projection(
            noise_OFF, out_OFF, sim.OneToOneConnector(
            ))  # implication if ON and OFF have the same noise input?
        noise_proj_OFF.setWeights(params['weight'])

        out_ON.record()
        out_OFF.record()

        # reads out time used for building
        buildCPUTime = myTimer.elapsedTime()

        # === Run simulation ===========================================================
        if verbose: print "Running simulation"

        myTimer.reset()  # start timer on construction
        sim.run(params['simtime'])
        simCPUTime = myTimer.elapsedTime()

        myTimer.reset()  # start timer on construction
        # TODO LUP use something like "for pop in [phr, out]" ?
        out_ON_filename = os.path.join(tmpdir, 'out_on.gdf')
        out_OFF_filename = os.path.join(tmpdir, 'out_off.gdf')
        out_ON.printSpikes(out_ON_filename)  #
        out_OFF.printSpikes(out_OFF_filename)  #

        # TODO LUP  get out_ON_DATA on a 2D grid independantly of out_ON.cell.astype(int)
        out_ON_DATA = load_spikelist(out_ON_filename,
                                     range(N),
                                     t_start=0.0,
                                     t_stop=params['simtime'])
        out_OFF_DATA = load_spikelist(out_OFF_filename,
                                      range(N),
                                      t_start=0.0,
                                      t_stop=params['simtime'])

        out = {
            'out_ON_DATA': out_ON_DATA,
            'out_OFF_DATA': out_OFF_DATA
        }  #,'out_ON_pos':out_ON}
        # cleans up
        os.remove(out_ON_filename)
        os.remove(out_OFF_filename)
        os.rmdir(tmpdir)
        writeCPUTime = myTimer.elapsedTime()

        if verbose:
            print "\nRetina Network Simulation:"
            print(params['description'])
            print "Number of Neurons  : ", N
            print "Output rate  (ON) : ", out_ON_DATA.mean_rate(
            ), "Hz/neuron in ", params['simtime'], "ms"
            print "Output rate (OFF)   : ", out_OFF_DATA.mean_rate(
            ), "Hz/neuron in ", params['simtime'], "ms"
            print("Build time             : %g s" % buildCPUTime)
            print("Simulation time        : %g s" % simCPUTime)
            print("Writing time           : %g s" % writeCPUTime)

        return out
def runNetwork(Be, 
               Bi, 
               nn_stim, 
               show_gui=True,
               dt = defaultParams.dt, 
               N_rec_v = 5, 
               save=False, 
               simtime = defaultParams.Tpost+defaultParams.Tstim+defaultParams.Tblank+defaultParams.Ttrans, 
               extra = {},
               kernelseed = 123):
    
    exec("from pyNN.%s import *" % simulator_name) in globals()
    
    timer = Timer()

    rec_conn={'EtoE':1, 'EtoI':1, 'ItoE':1, 'ItoI':1}

    print('####################')
    print('### (Be, Bi, nn_stim): ', Be, Bi, nn_stim)
    print('####################')

    Bee, Bei = Be, Be
    Bie, Bii = Bi, Bi

    N = defaultParams.N
    NE = defaultParams.NE
    NI = defaultParams.NI

    print('\n # -----> Num cells: %s, size of pert. inh: %s; base rate %s; pert rate %s'% (N, nn_stim, defaultParams.r_bkg, defaultParams.r_stim))

    r_extra = np.zeros(N)
    r_extra[NE:NE+nn_stim] = defaultParams.r_stim

    rr1 = defaultParams.r_bkg*np.random.uniform(.75,1.25, N)
    rr2 = rr1 + r_extra
    
    rank = setup(timestep=dt, max_delay=defaultParams.delay_default, reference='ISN', save_format='hdf5', **extra)
    
    print("rank =", rank)
    nump = num_processes()
    print("num_processes =", nump)
    import socket
    host_name = socket.gethostname()
    print("Host #%d is on %s" % (rank+1, host_name))

    if 'threads' in extra:
        print("%d Initialising the simulator with %d threads..." % (rank, extra['threads']))
    else:
        print("%d Initialising the simulator with single thread..." % rank)
        
        
    timer.start()  # start timer on construction
    
    print("%d Setting up random number generator using seed %s" % (rank, kernelseed))
    
    ks = open('kernelseed','w')
    ks.write('%i'%kernelseed)
    ks.close()
    
    rng = NumpyRNG(kernelseed, parallel_safe=True)
    
    
    nesp = defaultParams.neuron_params_default
    cell_parameters = {
        'cm':         nesp['C_m']/1000,   # Capacitance of the membrane in nF
        'tau_refrac': nesp['t_ref'],     # Duration of refractory period in ms.
        'v_spike':    0.0 ,     # Spike detection threshold in mV.   https://github.com/nest/nest-simulator/blob/master/models/aeif_cond_alpha.cpp
        'v_reset':    nesp['V_reset'],     # Reset value for V_m after a spike. In mV.
        'v_rest':     nesp['E_L'],     # Resting membrane potential (Leak reversal potential) in mV.
        'tau_m':      nesp['C_m']/nesp['g_L'],  # Membrane time constant in ms = cm/tau_m*1000.0, C_m/g_L
        'i_offset':   nesp['I_e']/1000,     # Offset current in nA
        'a':          0,     # Subthreshold adaptation conductance in nS.
        'b':          0,  # Spike-triggered adaptation in nA
        'delta_T':    2 ,     # Slope factor in mV. See https://github.com/nest/nest-simulator/blob/master/models/aeif_cond_alpha.cpp
        'tau_w':      144.0,     # Adaptation time constant in ms. See https://github.com/nest/nest-simulator/blob/master/models/aeif_cond_alpha.cpp
        'v_thresh':   nesp['V_th'],     # Spike initiation threshold in mV
        'e_rev_E':    nesp['E_ex'],     # Excitatory reversal potential in mV.
        'tau_syn_E':  nesp['tau_syn_ex'],     # Rise time of excitatory synaptic conductance in ms (alpha function).
        'e_rev_I':    nesp['E_in'],     # Inhibitory reversal potential in mV.
        'tau_syn_I':  nesp['tau_syn_in'],     # Rise time of the inhibitory synaptic conductance in ms (alpha function).
    }

    print("%d Creating population with %d neurons." % (rank, N))
    celltype = EIF_cond_alpha_isfa_ista(**cell_parameters)
    celltype.default_initial_values['v'] = cell_parameters['v_rest'] # Setting default init v, useful for NML2 export
    
    layer_volume = Cuboid(1000,100,1000)
    layer_structure = RandomStructure(layer_volume, origin=(0,0,0))
    
    layer_structure_input = RandomStructure(layer_volume, origin=(0,-150,0))
             
    default_cell_radius = 15
    stim_cell_radius = 10
    
    #EI_pop = Population(N, celltype, structure=layer_structure, label="EI")
    E_pop = Population(NE, celltype, structure=layer_structure, label='E_pop')
    E_pop.annotate(color='1 0 0')
    E_pop.annotate(radius=default_cell_radius)
    E_pop.annotate(type='E') # temp indicator to use for connection arrowhead
    #print("%d Creating pop %s." % (rank, E_pop))
    I_pop = Population(NI, celltype, structure=layer_structure, label='I_pop')
    I_pop.annotate(color='0 0 .9')
    I_pop.annotate(radius=default_cell_radius)
    I_pop.annotate(type='I') # temp indicator to use for connection arrowhead
    #print("%d Creating pop %s." % (rank, I_pop))
    
    I_pert_pop = PopulationView(I_pop, np.array(range(0,nn_stim)),label='I_pert_pop')
    I_nonpert_pop = PopulationView(I_pop, np.array(range(nn_stim,NI)),label='I_nonpert_pop')
    
    p_rate = defaultParams.r_bkg
    print("%d Creating excitatory Poisson generator with rate %g spikes/s." % (rank, p_rate))
    source_typeA_E = SpikeSourcePoisson(rate=p_rate, start=0,duration=defaultParams.Ttrans+defaultParams.Tblank+defaultParams.Tstim+defaultParams.Tpost)
    expoissonA_E = Population(NE, source_typeA_E, structure=layer_structure_input, label="stim_E")
    
    print("%d Creating excitatory Poisson generator with rate %g spikes/s." % (rank, p_rate))
    source_typeA_I = SpikeSourcePoisson(rate=p_rate, start=0,duration=defaultParams.Ttrans+defaultParams.Tblank)
    expoissonA_I = Population(NI, source_typeA_I, structure=layer_structure_input, label="pre_pert_stim_I")
    
    print("%d Creating excitatory Poisson generator with rate %g spikes/s." % (rank, p_rate))
    source_typeB = SpikeSourcePoisson(rate=p_rate, start=defaultParams.Ttrans+defaultParams.Tblank,duration=defaultParams.Tstim+defaultParams.Tpost)
    #expoissonB_E = Population(NE, source_typeB, label="non_pert_stim_E")
    expoissonB_I = Population(len(I_nonpert_pop), source_typeB, structure=layer_structure_input, label="non_pert_stim_I")
    
    p_rate = defaultParams.r_bkg+defaultParams.r_stim
    print("%d Creating excitatory Poisson generator with rate %g spikes/s." % (rank, p_rate))
    source_typeC = SpikeSourcePoisson(rate=p_rate, start=defaultParams.Ttrans+defaultParams.Tblank, duration=defaultParams.Tstim)
    expoissonC = Population(nn_stim, source_typeC, structure=layer_structure_input, label="pert_stim")

    p_rate = defaultParams.r_bkg
    print("%d Creating excitatory Poisson generator with rate %g spikes/s." % (rank, p_rate))
    source_typeD = SpikeSourcePoisson(rate=p_rate, start=defaultParams.Ttrans+defaultParams.Tblank+defaultParams.Tstim, duration=defaultParams.Tpost)
    expoissonD = Population(nn_stim, source_typeD, structure=layer_structure_input, label="pert_poststim")
    
    for p in [expoissonA_E,expoissonA_I,expoissonB_I,expoissonC,expoissonD]:
        p.annotate(color='0.8 0.8 0.8')
        p.annotate(radius=stim_cell_radius)

    progress_bar = ProgressBar(width=20)
    connector_E = FixedProbabilityConnector(0.15, rng=rng, callback=progress_bar)
    connector_I = FixedProbabilityConnector(1, rng=rng, callback=progress_bar)
    
    EE_syn = StaticSynapse(weight=0.001*Bee, delay=defaultParams.delay_default)
    EI_syn = StaticSynapse(weight=0.001*Bei, delay=defaultParams.delay_default)
    II_syn = StaticSynapse(weight=0.001*Bii, delay=defaultParams.delay_default)
    IE_syn = StaticSynapse(weight=0.001*Bie, delay=defaultParams.delay_default)
    
    #I_syn = StaticSynapse(weight=JI, delay=delay)
    ext_Connector = OneToOneConnector(callback=progress_bar)
    ext_syn_bkg = StaticSynapse(weight=0.001*defaultParams.Be_bkg, delay=defaultParams.delay_default)
    ext_syn_stim = StaticSynapse(weight=0.001*defaultParams.Be_stim, delay=defaultParams.delay_default)
    
    
    E_to_E = Projection(E_pop, E_pop, connector_E, EE_syn, receptor_type="excitatory")
    print("E --> E\t\t", len(E_to_E), "connections")
    E_to_I = Projection(E_pop, I_pop, connector_E, EI_syn, receptor_type="excitatory")
    print("E --> I\t\t", len(E_to_I), "connections")
    I_to_I = Projection(I_pop, I_pop, connector_I, II_syn, receptor_type="inhibitory")
    print("I --> I\t\t", len(I_to_I), "connections")
    I_to_E = Projection(I_pop, E_pop, connector_I, IE_syn, receptor_type="inhibitory")
    print("I --> E\t\t", len(I_to_E), "connections")
    
    
    input_A_E = Projection(expoissonA_E, E_pop, ext_Connector, ext_syn_bkg, receptor_type="excitatory")
    print("input --> %s cells pre pert\t"%len(E_pop), len(input_A_E), "connections")
    input_A_I = Projection(expoissonA_I, I_pop, ext_Connector, ext_syn_bkg, receptor_type="excitatory")
    print("input --> %s cells pre pert\t"%len(I_pop), len(input_A_I), "connections")
    
    ##input_B_E = Projection(expoissonB_E, E_pop, ext_Connector, ext_syn_bkg, receptor_type="excitatory")
    ##print("input --> %s cells post pert\t"%len(E_pop), len(input_B_E), "connections")
    
    input_B_I = Projection(expoissonB_I, I_nonpert_pop, ext_Connector, ext_syn_bkg, receptor_type="excitatory")
    print("input --> %s cells post pert\t"%len(I_nonpert_pop), len(input_B_I), "connections")
    
    
    input_C = Projection(expoissonC, I_pert_pop, ext_Connector, ext_syn_stim, receptor_type="excitatory")
    print("input --> %s cells pre pert\t"%len(I_pert_pop), len(input_C), "connections")
    
    input_D = Projection(expoissonD, I_pert_pop, ext_Connector, ext_syn_stim, receptor_type="excitatory")
    print("input --> %s cells pre pert\t"%len(I_pert_pop), len(input_D), "connections")
    
    # Can't be used for connections etc. as NeuroML export not (yet) supported
    EI_pop = Assembly(E_pop, I_pop, label='EI')
    
    # Record spikes
    print("%d Setting up recording in excitatory population." % rank)
    EI_pop.record('spikes')
    if N_rec_v>0:
        EI_pop[0:min(N,N_rec_v)].record('v')
    
    
    # read out time used for building
    buildCPUTime = timer.elapsedTime()
    # === Run simulation ===========================================================

    # run, measure computer time
    timer.start()  # start timer on construction
    print("%d Running simulation in %s for %g ms (dt=%sms)." % (rank, simulator_name, simtime, dt))
    run(simtime)
    print("Done")
    simCPUTime = timer.elapsedTime()
    
    # write data to file
    if save and not simulator_name=='neuroml':
        for pop in [EI_pop]:
            filename="ISN-%s-%s-%i.gdf"%(simulator_name, pop.label, rank)
            ff = open(filename, 'w')
            spikes =  pop.get_data('spikes', gather=False)
            spiketrains = spikes.segments[0].spiketrains
            print('Saving data recorded for %i spiketrains in pop %s, indices: %s, ids: %s to %s'% \
                (len(spiketrains),
                 pop.label, 
                 [s.annotations['source_index'] for s in spiketrains], 
                 [s.annotations['source_id'] for s in spiketrains], 
                 filename))
                 
            for spiketrain_i in range(len(spiketrains)):
                spiketrain = spiketrains[spiketrain_i]
                source_id = spiketrain.annotations['source_id']
                source_index = spiketrain.annotations['source_index']
                #print("Writing spike data for cell %s[%s] (gid: %i): %i spikes: [%s,...,%s] "%(pop.label,source_index, source_id, len(spiketrain),spiketrain[0],spiketrain[-1]))
                for t in spiketrain:
                    ff.write('%s\t%i\n'%(t.magnitude,spiketrain_i))
            ff.close()
                
            vs =  pop.get_data('v', gather=False)
            for segment in vs.segments:
                for i in range(len(segment.analogsignals[0].transpose())):
                    filename="ISN-%s-%s-cell%i.dat"%(simulator_name, pop.label, i)
                    print('Saving cell %i in %s to %s'%(i,pop.label,filename))
                    vm = segment.analogsignals[0].transpose()[i]
                    tt = np.array([t*dt/1000. for t in range(len(vm))])
                    times_vm = np.array([tt, vm/1000.]).transpose()
                    np.savetxt(filename, times_vm , delimiter = '\t', fmt='%s')
            
    spike_data = {}
    spike_data['senders'] = []
    spike_data['times'] = []
    index_offset = 1
    for pop in [EI_pop]:
        if rank == 0:
            spikes =  pop.get_data('spikes', gather=False)
            #print(spikes.segments[0].all_data)
            num_rec = len(spikes.segments[0].spiketrains)
            print("Extracting spike info (%i) for %i cells in %s"%(num_rec,pop.size,pop.label))
            #assert(num_rec==len(spikes.segments[0].spiketrains))
            for i in range(num_rec):
                ss = spikes.segments[0].spiketrains[i]
                for s in ss:
                    index = i+index_offset
                    #print("Adding spike at %s in %s[%i] (cell %i)"%(s,pop.label,i,index))
                    spike_data['senders'].append(index)
                    spike_data['times'].append(s)
            index_offset+=pop.size


    print("Build time         : %g s" % buildCPUTime)
    print("Simulation time    : %g s" % simCPUTime)

    # === Clean up and quit ========================================================

    end()
Example #15
0
    def run(self, params, verbose=True):
        tmpdir = tempfile.mkdtemp()
        timer = Timer()
        timer.start()  # start timer on construction

        # === Build the network ========================================================
        if verbose: print "Setting up simulation"
        sim.setup(timestep=params.simulation.dt,
                  max_delay=params.simulation.syn_delay,
                  debug=False)

        N = params.N
        #dc_generator
        current_source = sim.DCSource(amplitude=params.snr,
                                      start=params.simulation.simtime / 4,
                                      stop=params.simulation.simtime / 4 * 3)

        # internal noise model (NEST specific)
        noise = sim.Population(N, 'noise_generator', {
            'mean': 0.,
            'std': params.noise_std
        })
        # target population
        output = sim.Population(N, sim.IF_cond_exp)

        # initialize membrane potential
        numpy.random.seed(params.simulation.kernelseed)
        V_rest, V_spike = -70., -53.
        output.tset('v_init',
                    V_rest + numpy.random.rand(N, ) * (V_spike - V_rest))

        #  Connecting the network
        conn = sim.OneToOneConnector(weights=params.weight)
        sim.Projection(noise, output, conn)

        for cell in output:
            cell.inject(current_source)

        output.record()

        # reads out time used for building
        buildCPUTime = timer.elapsedTime()

        # === Run simulation ===========================================================
        if verbose: print "Running simulation"

        timer.reset()  # start timer on construction
        sim.run(params.simulation.simtime)
        simCPUTime = timer.elapsedTime()

        timer.reset()  # start timer on construction

        output_filename = os.path.join(tmpdir, 'output.gdf')
        #print output_filename
        output.printSpikes(output_filename)  #
        output_DATA = load_spikelist(output_filename,
                                     N,
                                     t_start=0.0,
                                     t_stop=params.simulation.simtime)
        writeCPUTime = timer.elapsedTime()

        if verbose:
            print "\nFiber Network Simulation:"
            print "Number of Neurons  : ", N
            print "Mean Output rate    : ", output_DATA.mean_rate(
            ), "Hz during ", params.simulation.simtime, "ms"
            print("Build time             : %g s" % buildCPUTime)
            print("Simulation time        : %g s" % simCPUTime)
            print("Writing time           : %g s" % writeCPUTime)

        os.remove(output_filename)
        os.rmdir(tmpdir)

        return output_DATA
def test_callback(data_input):
    global message
    message = data_input.actual.positions
    msg_list = list(message)

    #msg_list[0] = int(message[0].encode('hex'),16)
    #for i in
    #msg_list = int(message.encode('hex'),16)

    #print('============= Received image data.',message)
    rospy.loginfo('=====received data %r', msg_list[0])
    timer = Timer()
    dt = 0.1
    p.setup(timestep=dt)  # 0.1ms

    pop_1 = p.Population(1, p.IF_curr_exp, {}, label="pop_1")
    #input = p.Population(1, p.SpikeSourceArray, {'spike_times': [[0,3,6]]}, label='input')
    input = p.Population(1, p.SpikeSourcePoisson,
                         {'rate': (msg_list[0] + 1.6) * 100})
    stat_syn = p.StaticSynapse(weight=50.0, delay=1)
    input_proj = p.Projection(input,
                              pop_1,
                              p.OneToOneConnector(),
                              synapse_type=stat_syn,
                              receptor_type='excitatory')

    pop_1.record(['v', 'spikes'])
    p.run(10)
    pop_1_data = pop_1.get_data()

    spikes = pop_1_data.segments[0].spiketrains[0]
    mean_rate = int(gaussian_convolution(spikes, dt))
    rospy.loginfo('=====mean_rate %r', mean_rate)  # mean_rate = 64
    rate_command = mean_rate
    # rate coding of the spike train
    '''
    pub = rospy.Publisher('/cmd_vel_mux/input/teleop', Twist, queue_size=10)
    # construct the output command
    command = Twist()
    command.linear.x = rate_command*0.02
    command.angular.z = rate_command/50000.
    pub.publish(command)
    '''
    pub = rospy.Publisher('/arm_controller/follow_joint_trajectory/goal',
                          FollowJointTrajectoryActionGoal,
                          queue_size=10)
    command = FollowJointTrajectoryActionGoal()
    command.header.stamp = rospy.Time.now()
    command.goal.trajectory.joint_names = ['elbow']
    point = JointTrajectoryPoint()
    point.positions = [rate_command / 10]
    point.time_from_start = rospy.Duration(1)
    command.goal.trajectory.points.append(point)
    pub.publish(command)
    rospy.loginfo('=====send command %r', command.goal.trajectory.points[0])

    fig_settings = {
        'lines.linewidth': 0.5,
        'axes.linewidth': 0.5,
        'axes.labelsize': 'small',
        'legend.fontsize': 'small',
        'font.size': 8
    }
    plt.rcParams.update(fig_settings)
    fig1 = plt.figure(1, figsize=(6, 8))

    def plot_spiketrains(segment):
        for spiketrain in segment.spiketrains:
            y = np.ones_like(spiketrain) * spiketrain.annotations['source_id']
            plt.plot(spiketrain, y, '.')
            plt.ylabel(segment.name)
            plt.setp(plt.gca().get_xticklabels(), visible=False)

    def plot_signal(signal, index, colour='b'):
        label = "Neuron %d" % signal.annotations['source_ids'][index]
        plt.plot(signal.times, signal[:, index], colour, label=label)
        plt.ylabel("%s (%s)" %
                   (signal.name, signal.units._dimensionality.string))
        plt.setp(plt.gca().get_xticklabels(), visible=False)
        plt.legend()

    print("now plotting the network---------------")
    rospy.loginfo('--------now plotting---------------')
    n_panels = sum(a.shape[1]
                   for a in pop_1_data.segments[0].analogsignalarrays) + 2
    plt.subplot(n_panels, 1, 1)
    plot_spiketrains(pop_1_data.segments[0])
    panel = 3
    for array in pop_1_data.segments[0].analogsignalarrays:
        for i in range(array.shape[1]):
            plt.subplot(n_panels, 1, panel)
            plot_signal(array, i, colour='bg'[panel % 2])
            panel += 1
    plt.xlabel("time (%s)" % array.times.units._dimensionality.string)
    plt.setp(plt.gca().get_xticklabels(), visible=True)  #
Example #17
0
Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8:183-208

Andrew Davison, UNIC, CNRS
May 2006

"""

from pyNN.utility import get_script_args, Timer, ProgressBar

simulator_name = get_script_args(1)[0]
exec("from pyNN.%s import *" % simulator_name)

from pyNN.random import NumpyRNG, RandomDistribution

timer = Timer()

# === Define parameters ========================================================

downscale = 50  # scale number of neurons down by this factor
# scale synaptic weights up by this factor to
# obtain similar dynamics independent of size
order = 50000  # determines size of network:
# 4*order excitatory neurons
# 1*order inhibitory neurons
Nrec = 50  # number of neurons to record from, per population
epsilon = 0.1  # connectivity: proportion of neurons each neuron projects to

# Parameters determining model dynamics, cf Brunel (2000), Figs 7, 8 and Table 1
# here: Case C, asynchronous irregular firing, ~35 Hz
eta = 2.0  # rel rate of external input
Example #18
0
def runBrunelNetwork(g=5.,
                     eta=2.,
                     dt=0.1,
                     simtime=1000.0,
                     delay=1.5,
                     epsilon=0.1,
                     order=2500,
                     N_rec=50,
                     N_rec_v=2,
                     save=False,
                     simulator_name='nest',
                     jnml_simulator=None,
                     extra={}):

    exec("from pyNN.%s import *" % simulator_name) in globals()

    timer = Timer()

    # === Define parameters ========================================================

    downscale = 1  # scale number of neurons down by this factor
    # scale synaptic weights up by this factor to
    # obtain similar dynamics independent of size
    order = order  # determines size of network:
    # 4*order excitatory neurons
    # 1*order inhibitory neurons
    Nrec = N_rec  # number of neurons to record from, per population
    epsilon = epsilon  # connectivity: proportion of neurons each neuron projects to

    # Parameters determining model dynamics, cf Brunel (2000), Figs 7, 8 and Table 1
    # here: Case C, asynchronous irregular firing, ~35 Hz
    eta = eta  # rel rate of external input
    g = g  # rel strength of inhibitory synapses
    J = 0.1  # synaptic weight [mV]
    delay = delay  # synaptic delay, all connections [ms]

    # single neuron parameters
    tauMem = 20.0  # neuron membrane time constant [ms]
    tauSyn = 0.1  # synaptic time constant [ms]
    tauRef = 2.0  # refractory time [ms]
    U0 = 0.0  # resting potential [mV]
    theta = 20.0  # threshold

    # simulation-related parameters
    simtime = simtime  # simulation time [ms]
    dt = dt  # simulation step length [ms]

    # seed for random generator used when building connections
    connectseed = 12345789
    use_RandomArray = True  # use Python rng rather than NEST rng

    # seed for random generator(s) used during simulation
    kernelseed = 43210987

    # === Calculate derived parameters =============================================

    # scaling: compute effective order and synaptic strength
    order_eff = int(float(order) / downscale)
    J_eff = J * downscale

    # compute neuron numbers
    NE = int(4 * order_eff)  # number of excitatory neurons
    NI = int(1 * order_eff)  # number of inhibitory neurons
    N = NI + NE  # total number of neurons

    # compute synapse numbers
    CE = int(epsilon * NE)  # number of excitatory synapses on neuron
    CI = int(epsilon * NI)  # number of inhibitory synapses on neuron
    C = CE + CI  # total number of internal synapses per n.
    Cext = CE  # number of external synapses on neuron

    # synaptic weights, scaled for alpha functions, such that
    # for constant membrane potential, charge J would be deposited
    fudge = 0.00041363506632638  # ensures dV = J at V=0

    # excitatory weight: JE = J_eff / tauSyn * fudge
    JE = (J_eff / tauSyn) * fudge

    # inhibitory weight: JI = - g * JE
    JI = -g * JE

    # threshold, external, and Poisson generator rates:
    nu_thresh = theta / (J_eff * CE * tauMem)
    nu_ext = eta * nu_thresh  # external rate per synapse
    p_rate = 1000 * nu_ext * Cext  # external input rate per neuron (Hz)

    # number of synapses---just so we know
    Nsyn = (
        C + 1
    ) * N + 2 * Nrec  # number of neurons * (internal synapses + 1 synapse from PoissonGenerator) + 2synapses" to spike detectors

    # put cell parameters into a dict
    cell_params = {
        'tau_m': tauMem,
        'tau_syn_E': tauSyn,
        'tau_syn_I': tauSyn,
        'tau_refrac': tauRef,
        'v_rest': U0,
        'v_reset': U0,
        'v_thresh': theta,
        'cm': 0.001
    }  # (nF)

    # === Build the network ========================================================

    # clear all existing network elements and set resolution and limits on delays.
    # For NEST, limits must be set BEFORE connecting any elements

    #extra = {'threads' : 2}

    rank = setup(timestep=dt, max_delay=delay, **extra)
    print("rank =", rank)
    np = num_processes()
    print("np =", np)
    import socket
    host_name = socket.gethostname()
    print("Host #%d is on %s" % (rank + 1, host_name))

    if 'threads' in extra:
        print("%d Initialising the simulator with %d threads..." %
              (rank, extra['threads']))
    else:
        print("%d Initialising the simulator with single thread..." % rank)

    # Small function to display information only on node 1
    def nprint(s):
        if rank == 0:
            print(s)

    timer.start()  # start timer on construction

    print("%d Setting up random number generator" % rank)
    rng = NumpyRNG(kernelseed, parallel_safe=True)

    print("%d Creating excitatory population with %d neurons." % (rank, NE))
    celltype = IF_curr_alpha(**cell_params)
    celltype.default_initial_values[
        'v'] = U0  # Setting default init v, useful for NML2 export
    E_net = Population(NE, celltype, label="E_net")

    print("%d Creating inhibitory population with %d neurons." % (rank, NI))
    I_net = Population(NI, celltype, label="I_net")

    print(
        "%d Initialising membrane potential to random values between %g mV and %g mV."
        % (rank, U0, theta))
    uniformDistr = RandomDistribution('uniform', low=U0, high=theta, rng=rng)
    E_net.initialize(v=uniformDistr)
    I_net.initialize(v=uniformDistr)

    print("%d Creating excitatory Poisson generator with rate %g spikes/s." %
          (rank, p_rate))
    source_type = SpikeSourcePoisson(rate=p_rate)
    expoisson = Population(NE, source_type, label="expoisson")

    print("%d Creating inhibitory Poisson generator with the same rate." %
          rank)
    inpoisson = Population(NI, source_type, label="inpoisson")

    # Record spikes
    print("%d Setting up recording in excitatory population." % rank)
    E_net.record('spikes')
    if N_rec_v > 0:
        E_net[0:min(NE, N_rec_v)].record('v')

    print("%d Setting up recording in inhibitory population." % rank)
    I_net.record('spikes')
    if N_rec_v > 0:
        I_net[0:min(NI, N_rec_v)].record('v')

    progress_bar = ProgressBar(width=20)
    connector = FixedProbabilityConnector(epsilon,
                                          rng=rng,
                                          callback=progress_bar)
    E_syn = StaticSynapse(weight=JE, delay=delay)
    I_syn = StaticSynapse(weight=JI, delay=delay)
    ext_Connector = OneToOneConnector(callback=progress_bar)
    ext_syn = StaticSynapse(weight=JE, delay=dt)

    print(
        "%d Connecting excitatory population with connection probability %g, weight %g nA and delay %g ms."
        % (rank, epsilon, JE, delay))
    E_to_E = Projection(E_net,
                        E_net,
                        connector,
                        E_syn,
                        receptor_type="excitatory")
    print("E --> E\t\t", len(E_to_E), "connections")
    I_to_E = Projection(I_net,
                        E_net,
                        connector,
                        I_syn,
                        receptor_type="inhibitory")
    print("I --> E\t\t", len(I_to_E), "connections")
    input_to_E = Projection(expoisson,
                            E_net,
                            ext_Connector,
                            ext_syn,
                            receptor_type="excitatory")
    print("input --> E\t", len(input_to_E), "connections")

    print(
        "%d Connecting inhibitory population with connection probability %g, weight %g nA and delay %g ms."
        % (rank, epsilon, JI, delay))
    E_to_I = Projection(E_net,
                        I_net,
                        connector,
                        E_syn,
                        receptor_type="excitatory")
    print("E --> I\t\t", len(E_to_I), "connections")
    I_to_I = Projection(I_net,
                        I_net,
                        connector,
                        I_syn,
                        receptor_type="inhibitory")
    print("I --> I\t\t", len(I_to_I), "connections")
    input_to_I = Projection(inpoisson,
                            I_net,
                            ext_Connector,
                            ext_syn,
                            receptor_type="excitatory")
    print("input --> I\t", len(input_to_I), "connections")

    # read out time used for building
    buildCPUTime = timer.elapsedTime()
    # === Run simulation ===========================================================

    # run, measure computer time
    timer.start()  # start timer on construction
    print("%d Running simulation for %g ms (dt=%sms)." % (rank, simtime, dt))
    run(simtime)
    print("Done")
    simCPUTime = timer.elapsedTime()

    # write data to file
    #print("%d Writing data to file." % rank)
    #(E_net + I_net).write_data("Results/brunel_np%d_%s.pkl" % (np, simulator_name))
    if save and not simulator_name == 'neuroml':
        for pop in [E_net, I_net]:
            io = PyNNTextIO(filename="brunel-PyNN-%s-%s-%i.gdf" %
                            (simulator_name, pop.label, rank))
            spikes = pop.get_data('spikes', gather=False)
            for segment in spikes.segments:
                io.write_segment(segment)

            io = PyNNTextIO(filename="brunel-PyNN-%s-%s-%i.dat" %
                            (simulator_name, pop.label, rank))
            vs = pop.get_data('v', gather=False)
            for segment in vs.segments:
                io.write_segment(segment)

    spike_data = {}
    spike_data['senders'] = []
    spike_data['times'] = []
    index_offset = 1
    for pop in [E_net, I_net]:
        if rank == 0:
            spikes = pop.get_data('spikes', gather=False)
            #print(spikes.segments[0].all_data)
            num_rec = len(spikes.segments[0].spiketrains)
            print("Extracting spike info (%i) for %i cells in %s" %
                  (num_rec, pop.size, pop.label))
            #assert(num_rec==len(spikes.segments[0].spiketrains))
            for i in range(num_rec):
                ss = spikes.segments[0].spiketrains[i]
                for s in ss:
                    index = i + index_offset
                    #print("Adding spike at %s in %s[%i] (cell %i)"%(s,pop.label,i,index))
                    spike_data['senders'].append(index)
                    spike_data['times'].append(s)
            index_offset += pop.size

    #from IPython.core.debugger import Tracer
    #Tracer()()

    E_rate = E_net.mean_spike_count() * 1000.0 / simtime
    I_rate = I_net.mean_spike_count() * 1000.0 / simtime

    # write a short report
    nprint("\n--- Brunel Network Simulation ---")
    nprint("Nodes              : %d" % np)
    nprint("Number of Neurons  : %d" % N)
    nprint("Number of Synapses : %d" % Nsyn)
    nprint("Input firing rate  : %g" % p_rate)
    nprint("Excitatory weight  : %g" % JE)
    nprint("Inhibitory weight  : %g" % JI)
    nprint("Excitatory rate    : %g Hz" % E_rate)
    nprint("Inhibitory rate    : %g Hz" % I_rate)
    nprint("Build time         : %g s" % buildCPUTime)
    nprint("Simulation time    : %g s" % simCPUTime)

    # === Clean up and quit ========================================================

    end()

    if simulator_name == 'neuroml' and jnml_simulator:
        from pyneuroml import pynml
        lems_file = 'LEMS_Sim_PyNN_NeuroML2_Export.xml'

        print('Going to run generated LEMS file: %s on simulator: %s' %
              (lems_file, jnml_simulator))

        if jnml_simulator == 'jNeuroML':
            results, events = pynml.run_lems_with_jneuroml(
                lems_file,
                nogui=True,
                load_saved_data=True,
                reload_events=True)

        elif jnml_simulator == 'jNeuroML_NEURON':
            results, events = pynml.run_lems_with_jneuroml_neuron(
                lems_file,
                nogui=True,
                load_saved_data=True,
                reload_events=True)

        spike_data['senders'] = []
        spike_data['times'] = []
        for k in events.keys():
            values = k.split('/')
            index = int(
                values[1]) if values[0] == 'E_net' else NE + int(values[1])
            n = len(events[k])
            print(
                "Loading spikes for %s (index %i): [%s, ..., %s (n=%s)] sec" %
                (k, index, events[k][0] if n > 0 else '-',
                 events[k][-1] if n > 0 else '-', n))
            for t in events[k]:
                spike_data['senders'].append(index)
                spike_data['times'].append(t * 1000)

    #print spike_data
    return spike_data