Example #1
0
def run_simulation(sim,Params):
    print "Running Network"
    timer = Timer()
    timer.reset()
    sim.run(Params['run_time'])
    simCPUtime = timer.elapsedTime()
    print "Simulation Time: %s" % str(simCPUtime)
Example #2
0
def run_simulation(sim, params):
    print "Running Network ..."
    timer = Timer()
    timer.reset()
    sim.run(params['run_time'])
    simCPUtime = timer.elapsedTime()
    print "... The simulation took %s ms to run." % str(simCPUtime)
Example #3
0
    def run(self, params, verbose=True):
        tmpdir = tempfile.mkdtemp()
        timer = Timer()
        timer.start()  # start timer on construction

        # === Build the network ========================================================
        if verbose: print "Setting up simulation"
        sim.setup(timestep=params.simulation.dt,
                  max_delay=params.simulation.syn_delay,
                  debug=False)

        N = params.N
        #dc_generator
        current_source = sim.DCSource(amplitude=params.snr,
                                      start=params.simulation.simtime / 4,
                                      stop=params.simulation.simtime / 4 * 3)

        # internal noise model (NEST specific)
        noise = sim.Population(N, 'noise_generator', {
            'mean': 0.,
            'std': params.noise_std
        })
        # target population
        output = sim.Population(N, sim.IF_cond_exp)

        # initialize membrane potential
        numpy.random.seed(params.simulation.kernelseed)
        V_rest, V_spike = -70., -53.
        output.tset('v_init',
                    V_rest + numpy.random.rand(N, ) * (V_spike - V_rest))

        #  Connecting the network
        conn = sim.OneToOneConnector(weights=params.weight)
        sim.Projection(noise, output, conn)

        for cell in output:
            cell.inject(current_source)

        output.record()

        # reads out time used for building
        buildCPUTime = timer.elapsedTime()

        # === Run simulation ===========================================================
        if verbose: print "Running simulation"

        timer.reset()  # start timer on construction
        sim.run(params.simulation.simtime)
        simCPUTime = timer.elapsedTime()

        timer.reset()  # start timer on construction

        output_filename = os.path.join(tmpdir, 'output.gdf')
        #print output_filename
        output.printSpikes(output_filename)  #
        output_DATA = load_spikelist(output_filename,
                                     N,
                                     t_start=0.0,
                                     t_stop=params.simulation.simtime)
        writeCPUTime = timer.elapsedTime()

        if verbose:
            print "\nFiber Network Simulation:"
            print "Number of Neurons  : ", N
            print "Mean Output rate    : ", output_DATA.mean_rate(
            ), "Hz during ", params.simulation.simtime, "ms"
            print("Build time             : %g s" % buildCPUTime)
            print("Simulation time        : %g s" % simCPUTime)
            print("Writing time           : %g s" % writeCPUTime)

        os.remove(output_filename)
        os.rmdir(tmpdir)

        return output_DATA
    def run(self,params, verbose =True):
        tmpdir = tempfile.mkdtemp()
        timer = Timer()
        timer.start() # start timer on construction

        # === Build the network ========================================================
        if verbose: print "Setting up simulation"
        sim.setup(timestep=params.simulation.dt,max_delay=params.simulation.syn_delay, debug=False)

        N = params.N
        #dc_generator
        current_source = sim.DCSource(  amplitude= params.snr,
                                        start=params.simulation.simtime/4,
                                        stop=params.simulation.simtime/4*3)
        
        # internal noise model (NEST specific)
        noise = sim.Population(N,'noise_generator',{'mean':0.,'std':params.noise_std}) 
        # target population
        output = sim.Population(N , sim.IF_cond_exp)

        # initialize membrane potential
        numpy.random.seed(params.simulation.kernelseed)
        V_rest, V_spike = -70., -53.
        output.tset('v_init',V_rest + numpy.random.rand(N,)* (V_spike -V_rest))

        #  Connecting the network
        conn = sim.OneToOneConnector(weights = params.weight)
        sim.Projection(noise, output, conn)

        for cell in output:
            cell.inject(current_source)

        output.record()

        # reads out time used for building
        buildCPUTime= timer.elapsedTime()

        # === Run simulation ===========================================================
        if verbose: print "Running simulation"

        timer.reset() # start timer on construction
        sim.run(params.simulation.simtime)
        simCPUTime = timer.elapsedTime()

        timer.reset()  # start timer on construction

        output_filename = os.path.join(tmpdir,'output.gdf')
        #print output_filename
        output.printSpikes(output_filename)#
        output_DATA = load_spikelist(output_filename,N,
                                        t_start=0.0, t_stop=params.simulation.simtime)
        writeCPUTime = timer.elapsedTime()

        if verbose:
            print "\nFiber Network Simulation:"
            print "Number of Neurons  : ", N
            print "Mean Output rate    : ", output_DATA.mean_rate(), "Hz during ",params.simulation.simtime, "ms"
            print("Build time             : %g s" % buildCPUTime)
            print("Simulation time        : %g s" % simCPUTime)
            print("Writing time           : %g s" % writeCPUTime)

        os.remove(output_filename)
        os.rmdir(tmpdir)

        return output_DATA
Example #5
0
    def run(self, params, verbose=True):
        """
        params are the parameters to use

        """
        tmpdir = tempfile.mkdtemp()
        myTimer = Timer()
        # === Build the network ========================================================
        if verbose: print "Setting up simulation"
        myTimer.start()  # start timer on construction
        sim.setup(timestep=params['dt'], max_delay=params['syn_delay'])
        N = params['N']
        #dc_generator
        phr_ON = sim.Population((N, ), 'dc_generator')
        phr_OFF = sim.Population((N, ), 'dc_generator')

        for factor, phr in [(-params['snr'], phr_OFF),
                            (params['snr'], phr_ON)]:
            phr.tset('amplitude', params['amplitude'] * factor)
            phr.set({
                'start': params['simtime'] / 4,
                'stop': params['simtime'] / 4 * 3
            })

        # internal noise model (see benchmark_noise)
        noise_ON = sim.Population((N, ), 'noise_generator', {
            'mean': 0.,
            'std': params['noise_std']
        })
        noise_OFF = sim.Population((N, ), 'noise_generator', {
            'mean': 0.,
            'std': params['noise_std']
        })

        # target ON and OFF populations (what about a tridimensional Population?)
        out_ON = sim.Population(
            (N, ), sim.IF_curr_alpha
        )  #'IF_cond_alpha) #iaf_sfa_neuron')# EIF_cond_alpha_isfa_ista, IF_cond_exp_gsfa_grr,sim.IF_cond_alpha)#'iaf_sfa_neuron',params['parameters_gc'])#'iaf_cond_neuron')# IF_cond_alpha) #
        out_OFF = sim.Population(
            (N, ), sim.IF_curr_alpha
        )  #'IF_cond_alpha) #IF_curr_alpha)#'iaf_sfa_neuron')#sim.IF_curr_alpha)#,params['parameters_gc'])

        # initialize membrane potential TODO: and conductances?
        from pyNN.random import RandomDistribution, NumpyRNG
        rng = NumpyRNG(seed=params['kernelseed'])
        vinit_distr = RandomDistribution(distribution='uniform',
                                         parameters=[-70, -55],
                                         rng=rng)
        for out_ in [out_ON, out_OFF]:
            out_.randomInit(vinit_distr)

        retina_proj_ON = sim.Projection(phr_ON, out_ON,
                                        sim.OneToOneConnector())
        retina_proj_ON.setWeights(params['weight'])
        # TODO fix setWeight, add setDelays to 10 ms (relative to stimulus onset)
        retina_proj_OFF = sim.Projection(phr_OFF, out_OFF,
                                         sim.OneToOneConnector())
        retina_proj_OFF.setWeights(params['weight'])

        noise_proj_ON = sim.Projection(noise_ON, out_ON,
                                       sim.OneToOneConnector())
        noise_proj_ON.setWeights(params['weight'])
        noise_proj_OFF = sim.Projection(
            noise_OFF, out_OFF, sim.OneToOneConnector(
            ))  # implication if ON and OFF have the same noise input?
        noise_proj_OFF.setWeights(params['weight'])

        out_ON.record()
        out_OFF.record()

        # reads out time used for building
        buildCPUTime = myTimer.elapsedTime()

        # === Run simulation ===========================================================
        if verbose: print "Running simulation"

        myTimer.reset()  # start timer on construction
        sim.run(params['simtime'])
        simCPUTime = myTimer.elapsedTime()

        myTimer.reset()  # start timer on construction
        # TODO LUP use something like "for pop in [phr, out]" ?
        out_ON_filename = os.path.join(tmpdir, 'out_on.gdf')
        out_OFF_filename = os.path.join(tmpdir, 'out_off.gdf')
        out_ON.printSpikes(out_ON_filename)  #
        out_OFF.printSpikes(out_OFF_filename)  #

        # TODO LUP  get out_ON_DATA on a 2D grid independantly of out_ON.cell.astype(int)
        out_ON_DATA = load_spikelist(out_ON_filename,
                                     range(N),
                                     t_start=0.0,
                                     t_stop=params['simtime'])
        out_OFF_DATA = load_spikelist(out_OFF_filename,
                                      range(N),
                                      t_start=0.0,
                                      t_stop=params['simtime'])

        out = {
            'out_ON_DATA': out_ON_DATA,
            'out_OFF_DATA': out_OFF_DATA
        }  #,'out_ON_pos':out_ON}
        # cleans up
        os.remove(out_ON_filename)
        os.remove(out_OFF_filename)
        os.rmdir(tmpdir)
        writeCPUTime = myTimer.elapsedTime()

        if verbose:
            print "\nRetina Network Simulation:"
            print(params['description'])
            print "Number of Neurons  : ", N
            print "Output rate  (ON) : ", out_ON_DATA.mean_rate(
            ), "Hz/neuron in ", params['simtime'], "ms"
            print "Output rate (OFF)   : ", out_OFF_DATA.mean_rate(
            ), "Hz/neuron in ", params['simtime'], "ms"
            print("Build time             : %g s" % buildCPUTime)
            print("Simulation time        : %g s" % simCPUTime)
            print("Writing time           : %g s" % writeCPUTime)

        return out
Example #6
0
    def run(self, params, verbose=True):
        """
        params are the parameters to use

        """
        tmpdir = tempfile.mkdtemp()
        myTimer = Timer()
        # === Build the network ========================================================
        if verbose:
            print "Setting up simulation"
        myTimer.start()  # start timer on construction
        sim.setup(timestep=params["dt"], max_delay=params["syn_delay"])
        N = params["N"]
        # dc_generator
        phr_ON = sim.Population((N,), "dc_generator")
        phr_OFF = sim.Population((N,), "dc_generator")

        for factor, phr in [(-params["snr"], phr_OFF), (params["snr"], phr_ON)]:
            phr.tset("amplitude", params["amplitude"] * factor)
            phr.set({"start": params["simtime"] / 4, "stop": params["simtime"] / 4 * 3})

        # internal noise model (see benchmark_noise)
        noise_ON = sim.Population((N,), "noise_generator", {"mean": 0.0, "std": params["noise_std"]})
        noise_OFF = sim.Population((N,), "noise_generator", {"mean": 0.0, "std": params["noise_std"]})

        # target ON and OFF populations (what about a tridimensional Population?)
        out_ON = sim.Population(
            (N,), sim.IF_curr_alpha
        )  #'IF_cond_alpha) #iaf_sfa_neuron')# EIF_cond_alpha_isfa_ista, IF_cond_exp_gsfa_grr,sim.IF_cond_alpha)#'iaf_sfa_neuron',params['parameters_gc'])#'iaf_cond_neuron')# IF_cond_alpha) #
        out_OFF = sim.Population(
            (N,), sim.IF_curr_alpha
        )  #'IF_cond_alpha) #IF_curr_alpha)#'iaf_sfa_neuron')#sim.IF_curr_alpha)#,params['parameters_gc'])

        # initialize membrane potential TODO: and conductances?
        from pyNN.random import RandomDistribution, NumpyRNG

        rng = NumpyRNG(seed=params["kernelseed"])
        vinit_distr = RandomDistribution(distribution="uniform", parameters=[-70, -55], rng=rng)
        for out_ in [out_ON, out_OFF]:
            out_.randomInit(vinit_distr)

        retina_proj_ON = sim.Projection(phr_ON, out_ON, sim.OneToOneConnector())
        retina_proj_ON.setWeights(params["weight"])
        # TODO fix setWeight, add setDelays to 10 ms (relative to stimulus onset)
        retina_proj_OFF = sim.Projection(phr_OFF, out_OFF, sim.OneToOneConnector())
        retina_proj_OFF.setWeights(params["weight"])

        noise_proj_ON = sim.Projection(noise_ON, out_ON, sim.OneToOneConnector())
        noise_proj_ON.setWeights(params["weight"])
        noise_proj_OFF = sim.Projection(
            noise_OFF, out_OFF, sim.OneToOneConnector()
        )  # implication if ON and OFF have the same noise input?
        noise_proj_OFF.setWeights(params["weight"])

        out_ON.record()
        out_OFF.record()

        # reads out time used for building
        buildCPUTime = myTimer.elapsedTime()

        # === Run simulation ===========================================================
        if verbose:
            print "Running simulation"

        myTimer.reset()  # start timer on construction
        sim.run(params["simtime"])
        simCPUTime = myTimer.elapsedTime()

        myTimer.reset()  # start timer on construction
        # TODO LUP use something like "for pop in [phr, out]" ?
        out_ON_filename = os.path.join(tmpdir, "out_on.gdf")
        out_OFF_filename = os.path.join(tmpdir, "out_off.gdf")
        out_ON.printSpikes(out_ON_filename)  #
        out_OFF.printSpikes(out_OFF_filename)  #

        # TODO LUP  get out_ON_DATA on a 2D grid independantly of out_ON.cell.astype(int)
        out_ON_DATA = load_spikelist(out_ON_filename, range(N), t_start=0.0, t_stop=params["simtime"])
        out_OFF_DATA = load_spikelist(out_OFF_filename, range(N), t_start=0.0, t_stop=params["simtime"])

        out = {"out_ON_DATA": out_ON_DATA, "out_OFF_DATA": out_OFF_DATA}  # ,'out_ON_pos':out_ON}
        # cleans up
        os.remove(out_ON_filename)
        os.remove(out_OFF_filename)
        os.rmdir(tmpdir)
        writeCPUTime = myTimer.elapsedTime()

        if verbose:
            print "\nRetina Network Simulation:"
            print (params["description"])
            print "Number of Neurons  : ", N
            print "Output rate  (ON) : ", out_ON_DATA.mean_rate(), "Hz/neuron in ", params["simtime"], "ms"
            print "Output rate (OFF)   : ", out_OFF_DATA.mean_rate(), "Hz/neuron in ", params["simtime"], "ms"
            print ("Build time             : %g s" % buildCPUTime)
            print ("Simulation time        : %g s" % simCPUTime)
            print ("Writing time           : %g s" % writeCPUTime)

        return out
Example #7
0
        shutil.copy('./'+opts.param_file, opts.data_folder+ str(run)+'/'+opts.param_file+'_'+str(comb)+'.py')

        if not opts.analysis:
            already_computed = 0
            for pop in params['Populations'].keys():
                if os.path.exists(opts.data_folder + str(run) +'/'+pop+str(comb)+'.pkl'):
                    already_computed = already_computed + 1
            if already_computed > 0:
                print "already computed"
            else:
                Populations = h.build_network(sim,params)
                h.record_data(params, Populations)
                h.perform_injections(params, Populations)
                print "Running Network"
                timer = Timer()
                timer.reset()
                interval = 10
                sim.run(params['run_time'], callbacks = SetInput(Populations, interval, params['dt']))
                simCPUtime = timer.elapsedTime()
                print "Simulation Time: %s" % str(simCPUtime)
                h.save_data(Populations, opts.data_folder + str(run), str(comb))
                sim.end()
        else :
            if search:
                already_computed = 0
                for pop in params['Populations'].keys():
                    if os.path.exists(opts.data_folder + str(run) +'/'+pop+str(comb)+'.png'):
                        already_computed = already_computed + 1
                if already_computed > len(params['Populations']) - 1:
                    print "already analysed"
                else:
                         delays=None),
                     target='excitatory',
                     rng=rng)

# Recording
#pyB.record_v(10)
#inhB.record_v(10)
py.record()
inh.record()
pyB.record()
inhB.record()
#

print "Running Network"
timer = Timer()
timer.reset()
run(run_time)
simCPUtime = timer.elapsedTime()

print "Simulation Time: %s" % str(simCPUtime)

#os.chdir('Insert Data Directory Here')
#pyB.print_v('pyB_v.dat')
#inhB.print_v('inhB_v.dat')
py.printSpikes('py.dat')
inh.printSpikes('inh.dat')
pyB.printSpikes('pyB.dat')
inhB.printSpikes('inhB.dat')

#py_py.saveConnections('py_py.conn')
Example #9
0
def run_simulation(run):

    info = {}
    # run combinations
    for i,comb in enumerate(combinations):
        print "param combination",i, "trial",run
        print "current set:",comb

        # replacement
        for ckey,val in comb.iteritems():
            keys = ckey.split('.') # get list from dotted string
            replace(params,keys,val)

        # save parameters in the data_folder
        if not os.path.exists(opts.data_folder+str(run)):
            os.makedirs(opts.data_folder+str(run))
        shutil.copy('./'+opts.param_file, opts.data_folder + str(run)+'/'+opts.param_file+'_'+str(comb)+'.py')

        if not opts.analysis: #run simulation
	    # run simulation if it hasn't already been ran for these parameters
            already_computed = 0
            for pop in params['Populations'].keys():
                if os.path.exists(opts.data_folder + str(run) +'/'+pop+str(comb)+'.pkl'):
                    already_computed = already_computed + 1
            if already_computed > 0:
                print "already computed"
            else:
                Populations = h.build_network(sim,params)
                h.record_data(params, Populations)
                h.perform_injections(params, Populations)
                print "Running Network"
                timer = Timer()
                timer.reset()
		inject_spikes = partial(inject_spikes_pop,Populations = Populations)
                sim.run(params['run_time'], [inject_spikes])
                simCPUtime = timer.elapsedTime()
                print "Simulation Time: %s" % str(simCPUtime)
                h.save_data(Populations, opts.data_folder + str(run), str(comb))
                sim.end()

        else : #do analysis
            if search: #then compute the csv needed for the search maps
                already_analysed = 0 #analyse only those that haven't already been analysed
                for pop in params['Populations'].keys():
                    if os.path.exists(opts.data_folder + str(run) +'/'+pop+str(comb)+'.png'):
                        already_analysed = already_analysed + 1
                if already_analysed >= len(params['Populations'])-1 :
                    print "already analysed"
                else:	
                    ratio,fqcy,psd,freq, fqcy_ratio = h.analyse(params, opts.data_folder + str(run), str(comb), opts.remove)
 		    #save computed values in csv files                   
                    gen = (pop for pop in params['Populations'].keys() if pop != 'ext')
                    for pop in gen:
                        if i == 0:
                            with open(opts.data_folder+ str(run)+'/map-'+pop+'.csv', 'wb') as csvfile:
                                mywriter = csv.writer(csvfile)
                                mywriter.writerow( ['#'+str(testParams[1])+ ':' +str(search[testParams[1]]) ] )
                                mywriter.writerow( ['#'+str(testParams[0])+ ':' +str(search[testParams[0]]) ] )

                            with open(opts.data_folder+ str(run)+'/psdmap-'+pop+'.csv', 'wb') as csvfile:
                                mywriter = csv.writer(csvfile)
                                mywriter.writerow( ['#'+str(testParams[1])+ ':' +str(search[testParams[1]]) ] )
                                mywriter.writerow( ['#'+str(testParams[0])+ ':' +str(search[testParams[0]]) ] )
                                if pop in freq:
                                    mywriter.writerow(freq[pop])
			    info[pop] = []

                        if pop in ratio and pop in fqcy:
                            info[pop].append([ratio[pop],fqcy[pop],fqcy_ratio[pop]])
                            if (i+1)%len(search[testParams[1]]) == 0:
                                with open(opts.data_folder+str(run)+'/map-'+pop+'.csv', 'a') as csvfile:
                                    mywriter = csv.writer(csvfile)
                                    mywriter.writerow(info[pop])
                                    info[pop] = []
                        if pop in psd:
                            with open(opts.data_folder+str(run)+'/psdmap-'+pop+'.csv', 'a') as csvfile:
                                mywriter = csv.writer(csvfile)
                                mywriter.writerow(psd[pop])

            else:
                h.analyse(params, opts.data_folder+str(run), str(comb), opts.remove)