Example #1
0
 def _tune(self, graph=None, personalization=None, *args, **kwargs):
     previous_backend = backend.backend_name()
     personalization = to_signal(graph, personalization)
     if self.tuning_backend is not None and self.tuning_backend != previous_backend:
         backend.load_backend(self.tuning_backend)
     backend_personalization = to_signal(
         graph, backend.to_array(personalization.np))
     prev_dropout = kwargs.get("graph_dropout")
     kwargs["graph_dropout"] = 0
     best_value = -float('inf')
     best_ranker = None
     fraction_of_training = self.fraction_of_training if isinstance(
         self.fraction_of_training,
         Iterable) else [self.fraction_of_training]
     for ranker in self.rankers:
         values = list()
         for seed, fraction in enumerate(fraction_of_training):
             training, validation = split(backend_personalization,
                                          fraction,
                                          seed=seed)
             measure = self.measure(validation, training)
             values.append(
                 measure.best_direction() *
                 measure.evaluate(ranker.rank(training, *args, **kwargs)))
         value = np.min(values)
         if value > best_value:
             best_value = value
             best_ranker = ranker
     if self.tuning_backend is not None and self.tuning_backend != previous_backend:
         backend.load_backend(previous_backend)
         # TODO: make training back-propagate through tensorflow for combined_prediction==False
     kwargs["graph_dropout"] = prev_dropout
     return best_ranker, personalization if self.combined_prediction else training
Example #2
0
 def _tune(self, graph=None, personalization=None, *args, **kwargs):
     previous_backend = backend.backend_name()
     personalization = to_signal(graph, personalization)
     if self.tuning_backend is not None and self.tuning_backend != previous_backend:
         backend.load_backend(self.tuning_backend)
     backend_personalization = to_signal(
         graph, backend.to_array(personalization.np))
     training, validation = split(backend_personalization,
                                  self.fraction_of_training)
     measure = self.measure(validation, training)
     best_params = optimize(
         lambda params: -measure.best_direction() * measure.evaluate(
             self._run(training, params, *args, **kwargs)),
         **self.optimize_args)
     if self.tuning_backend is not None and self.tuning_backend != previous_backend:
         backend.load_backend(previous_backend)
         # TODO: make training back-propagate through tensorflow for combined_prediction==False (do this with a gather in the split method)
     return self.ranker_generator(
         best_params
     ), personalization if self.combined_prediction else training
Example #3
0
 def _tune(self, graph=None, personalization=None, *args, **kwargs):
     previous_backend = backend.backend_name()
     personalization = to_signal(graph, personalization)
     if self.tuning_backend is not None and self.tuning_backend != previous_backend:
         backend.load_backend(self.tuning_backend)
     backend_personalization = to_signal(
         graph, backend.to_array(personalization.np))
     training, validation = split(backend_personalization,
                                  self.fraction_of_training)
     measure = self.measure(validation, training)
     best_value = -float('inf')
     best_ranker = None
     for ranker in self.rankers:
         value = measure.best_direction() * measure.evaluate(
             ranker.rank(training, *args, **kwargs))
         if value > best_value:
             best_value = value
             best_ranker = ranker
     if self.tuning_backend is not None and self.tuning_backend != previous_backend:
         backend.load_backend(previous_backend)
         # TODO: make training back-propagate through tensorflow for combined_prediction==False
     return best_ranker, personalization if self.combined_prediction else training
Example #4
0
    def _tune(self, graph=None, personalization=None, *args, **kwargs):
        #graph_dropout = kwargs.get("graph_dropout", 0)
        #kwargs["graph_dropout"] = 0
        previous_backend = backend.backend_name()
        personalization = to_signal(graph, personalization)
        graph = personalization.graph
        if self.tuning_backend is not None and self.tuning_backend != previous_backend:
            backend.load_backend(self.tuning_backend)
        backend_personalization = to_signal(
            personalization, backend.to_array(personalization.np))
        #training, validation = split(backend_personalization, 0.8)
        #training2, validation2 = split(backend_personalization, 0.6)
        #measure_weights = [1, 1, 1, 1, 1]
        #propagated = [training.np, validation.np, backend_personalization.np, training2.np, validation2.np]

        measure_values = [None] * (self.num_parameters + self.autoregression)
        M = self.ranker_generator(measure_values).preprocessor(graph)

        #for _ in range(10):
        #    backend_personalization.np = backend.conv(backend_personalization.np, M)
        training, validation = split(backend_personalization, 0.8)
        training1, training2 = split(training, 0.5)

        propagated = [training1.np, training2.np]
        measures = [
            self.measure(backend_personalization, training1),
            self.measure(backend_personalization, training2)
        ]
        #measures = [self.measure(validation, training), self.measure(training, validation)]

        if self.basis == "krylov":
            for i in range(len(measure_values)):
                measure_values[i] = [
                    measure(p) for p, measure in zip(propagated, measures)
                ]
                propagated = [backend.conv(p, M) for p in propagated]
        else:
            basis = [
                arnoldi_iteration(M, p, len(measure_values))[0]
                for p in propagated
            ]
            for i in range(len(measure_values)):
                measure_values[i] = [
                    float(measure(base[:, i]))
                    for base, measure in zip(basis, measures)
                ]
        measure_values = backend.to_primitive(measure_values)
        mean_value = backend.mean(measure_values, axis=0)
        measure_values = measure_values - mean_value
        best_parameters = measure_values
        measure_weights = [1] * measure_values.shape[1]
        if self.autoregression != 0:
            #vals2 = -measure_values-mean_value
            #measure_values = np.concatenate([measure_values, vals2-np.mean(vals2, axis=0)], axis=1)
            window = backend.repeat(1. / self.autoregression,
                                    self.autoregression)
            beta1 = 0.9
            beta2 = 0.999
            beta1t = 1
            beta2t = 1
            rms = window * 0
            momentum = window * 0
            error = float('inf')
            while True:
                beta1t *= beta1
                beta2t *= beta2
                prev_error = error
                parameters = backend.copy(measure_values)
                for i in range(len(measure_values) - len(window) - 2, -1, -1):
                    parameters[i, :] = backend.dot(
                        (window),
                        measure_values[(i + 1):(i + len(window) + 1), :])
                errors = (parameters - measure_values
                          ) * measure_weights / backend.sum(measure_weights)
                for j in range(len(window)):
                    gradient = 0
                    for i in range(len(measure_values) - len(window) - 1):
                        gradient += backend.dot(measure_values[i + j + 1, :],
                                                errors[i, :])
                    momentum[j] = beta1 * momentum[j] + (
                        1 - beta1) * gradient  #*np.sign(window[j])
                    rms[j] = beta2 * rms[j] + (1 - beta2) * gradient * gradient
                    window[j] -= 0.01 * momentum[j] / (1 - beta1t) / (
                        (rms[j] / (1 - beta2t))**0.5 + 1.E-8)
                    #window[j] -= 0.01*gradient*np.sign(window[j])
                error = backend.mean(backend.abs(errors))
                if error == 0 or abs(error - prev_error) / error < 1.E-6:
                    best_parameters = parameters
                    break
        best_parameters = backend.mean(best_parameters[:self.num_parameters, :]
                                       * backend.to_primitive(measure_weights),
                                       axis=1) + backend.mean(mean_value)

        if self.tunable_offset is not None:
            div = backend.max(best_parameters)
            if div != 0:
                best_parameters /= div
            measure = self.tunable_offset(validation, training)
            base = basis[0] if self.basis != "krylov" else None
            best_offset = optimize(
                lambda params: -measure.best_direction() * measure(
                    self._run(training, [(best_parameters[i] + params[
                        2]) * params[0]**i + params[1] for i in range(
                            len(best_parameters))], base, *args, **kwargs)),
                #lambda params: - measure.evaluate(self._run(training, best_parameters + params[0], *args, **kwargs)),
                max_vals=[1, 0, 0],
                min_vals=[0, 0, 0],
                deviation_tol=0.005,
                parameter_tol=1,
                partitions=5,
                divide_range=2)
            #best_parameters += best_offset[0]
            best_parameters = [
                (best_parameters[i] + best_offset[2]) * best_offset[0]**i +
                best_offset[1] for i in range(len(best_parameters))
            ]

        best_parameters = backend.to_primitive(best_parameters)
        if backend.sum(backend.abs(best_parameters)) != 0:
            best_parameters /= backend.mean(backend.abs(best_parameters))
        if self.tuning_backend is not None and self.tuning_backend != previous_backend:
            best_parameters = [
                float(param) for param in best_parameters
            ]  # convert parameters to backend-independent list
            backend.load_backend(previous_backend)
        #kwargs["graph_dropout"] = graph_dropout
        if self.basis != "krylov":
            return Tautology(), self._run(
                personalization, best_parameters, *args,
                **kwargs)  # TODO: make this unecessary
        return self.ranker_generator(best_parameters), personalization
Example #5
0
def benchmark(algorithms: Mapping[str, NodeRanking],
              datasets: Any,
              metric: Union[Callable[[nx.Graph], Measure], Callable[[GraphSignal, GraphSignal], Measure]] = AUC,
              fraction_of_training: Union[float, Iterable[float]] = 0.5,
              sensitive: Optional[Union[Callable[[nx.Graph], Measure], Callable[[GraphSignal, GraphSignal], Measure]]] = None,
              seed: Union[int, Iterable[int]] = 0):
    """
    Compares the outcome of provided algorithms on given datasets using a desired metric.

    Args:
        algorithms: A map from names to node ranking algorithms to compare.
        datasets: A list of datasets to compare the algorithms on. List elements should either be strings or (string, num) tuples
            indicating the dataset name and number of community of interest respectively.
        metric: A method to instantiate a measure type to assess the efficacy of algorithms with.
        fraction_of_training: The fraction of training samples to split on. The rest are used for testing. An
            iterable of floats can also be provided to experiment with multiple fractions.
        sensitive: Optinal. A generator of sensitivity-aware supervised or unsupervised measures.
            Could be None (default).
        seed: A seed to ensure reproducibility. Default is 0. An iterable of floats can also be provided to experimet
            with multiple seeds.
    Returns:
        Yields an array of outcomes. Is meant to be used with wrapping methods, such as print_benchmark.
    Example:
        >>> import pygrank as pg
        >>> algorithms = ...
        >>> datasets = ...
        >>> pg.benchmark_print(pg.benchmark(algorithms, datasets))
    """
    if sensitive is not None:
        yield [""] + [algorithm for algorithm in algorithms for suffix in [metric.__name__, sensitive.__name__]]
        yield [""] + [suffix for algorithm in algorithms for suffix in [metric.__name__, sensitive.__name__]]
    else:
        yield [""] + [algorithm for algorithm in algorithms]
    seeds = [seed] if isinstance(seed, int) else seed
    fraction_of_training = [fraction_of_training] if isinstance(fraction_of_training, float) else fraction_of_training
    for name, graph, group in datasets:
        for training_samples in fraction_of_training:
            for seed in seeds:
                multigroup = isinstance(group, collections.abc.Mapping) and not isinstance(group, GraphSignal)
                training, evaluation = split(group, training_samples=training_samples, seed=seed)
                if sensitive is None and multigroup:
                    training = {group_id: to_signal(graph,{v: 1 for v in group}) for group_id, group in training.items()}
                    evaluation = {group_id: to_signal(graph,{v: 1 for v in group}) for group_id, group in evaluation.items()}
                    rank = lambda algorithm: {group_id: algorithm(graph, group) for group_id, group in training.items()}
                else:
                    if multigroup:
                        training = training[0]
                        evaluation = evaluation[0]
                        sensitive_signal = to_signal(graph, {v: 1 for v in group[max(group.keys())]})
                        training, evaluation = to_signal(graph, {v: 1 for v in training}), to_signal(graph, {v: 1 for v in evaluation})
                    else:
                        training, evaluation = to_signal(graph, {v: 1 for v in training}), to_signal(graph, {v: 1 for v in evaluation})
                    if sensitive is not None:
                        if not multigroup:
                            sensitive_signal = to_signal(training, 1-evaluation.np)
                        #training.np = training.np*(1-sensitive_signal.np)
                        rank = lambda algorithm: algorithm(graph, training, sensitive=sensitive_signal)
                    else:
                        rank = lambda algorithm: algorithm(graph, training)
                dataset_results = [name]
                for algorithm in algorithms.values():
                    if metric == Time:
                        tic = time()
                        predictions = rank(algorithm)
                        dataset_results.append(time()-tic)
                    else:
                        predictions = rank(algorithm)
                        try:
                            dataset_results.append(metric(graph)(predictions))
                        except:
                            dataset_results.append(metric(evaluation, training)(predictions))
                    if sensitive is not None:
                        try:
                            dataset_results.append(sensitive(sensitive_signal, training)(predictions))
                        except:
                            dataset_results.append(sensitive(evaluation, sensitive_signal, training)(predictions))
                yield dataset_results