def _tune(self, graph=None, personalization=None, *args, **kwargs): previous_backend = backend.backend_name() personalization = to_signal(graph, personalization) if self.tuning_backend is not None and self.tuning_backend != previous_backend: backend.load_backend(self.tuning_backend) backend_personalization = to_signal( graph, backend.to_array(personalization.np)) prev_dropout = kwargs.get("graph_dropout") kwargs["graph_dropout"] = 0 best_value = -float('inf') best_ranker = None fraction_of_training = self.fraction_of_training if isinstance( self.fraction_of_training, Iterable) else [self.fraction_of_training] for ranker in self.rankers: values = list() for seed, fraction in enumerate(fraction_of_training): training, validation = split(backend_personalization, fraction, seed=seed) measure = self.measure(validation, training) values.append( measure.best_direction() * measure.evaluate(ranker.rank(training, *args, **kwargs))) value = np.min(values) if value > best_value: best_value = value best_ranker = ranker if self.tuning_backend is not None and self.tuning_backend != previous_backend: backend.load_backend(previous_backend) # TODO: make training back-propagate through tensorflow for combined_prediction==False kwargs["graph_dropout"] = prev_dropout return best_ranker, personalization if self.combined_prediction else training
def _tune(self, graph=None, personalization=None, *args, **kwargs): previous_backend = backend.backend_name() personalization = to_signal(graph, personalization) if self.tuning_backend is not None and self.tuning_backend != previous_backend: backend.load_backend(self.tuning_backend) backend_personalization = to_signal( graph, backend.to_array(personalization.np)) training, validation = split(backend_personalization, self.fraction_of_training) measure = self.measure(validation, training) best_params = optimize( lambda params: -measure.best_direction() * measure.evaluate( self._run(training, params, *args, **kwargs)), **self.optimize_args) if self.tuning_backend is not None and self.tuning_backend != previous_backend: backend.load_backend(previous_backend) # TODO: make training back-propagate through tensorflow for combined_prediction==False (do this with a gather in the split method) return self.ranker_generator( best_params ), personalization if self.combined_prediction else training
def _tune(self, graph=None, personalization=None, *args, **kwargs): previous_backend = backend.backend_name() personalization = to_signal(graph, personalization) if self.tuning_backend is not None and self.tuning_backend != previous_backend: backend.load_backend(self.tuning_backend) backend_personalization = to_signal( graph, backend.to_array(personalization.np)) training, validation = split(backend_personalization, self.fraction_of_training) measure = self.measure(validation, training) best_value = -float('inf') best_ranker = None for ranker in self.rankers: value = measure.best_direction() * measure.evaluate( ranker.rank(training, *args, **kwargs)) if value > best_value: best_value = value best_ranker = ranker if self.tuning_backend is not None and self.tuning_backend != previous_backend: backend.load_backend(previous_backend) # TODO: make training back-propagate through tensorflow for combined_prediction==False return best_ranker, personalization if self.combined_prediction else training
def _tune(self, graph=None, personalization=None, *args, **kwargs): #graph_dropout = kwargs.get("graph_dropout", 0) #kwargs["graph_dropout"] = 0 previous_backend = backend.backend_name() personalization = to_signal(graph, personalization) graph = personalization.graph if self.tuning_backend is not None and self.tuning_backend != previous_backend: backend.load_backend(self.tuning_backend) backend_personalization = to_signal( personalization, backend.to_array(personalization.np)) #training, validation = split(backend_personalization, 0.8) #training2, validation2 = split(backend_personalization, 0.6) #measure_weights = [1, 1, 1, 1, 1] #propagated = [training.np, validation.np, backend_personalization.np, training2.np, validation2.np] measure_values = [None] * (self.num_parameters + self.autoregression) M = self.ranker_generator(measure_values).preprocessor(graph) #for _ in range(10): # backend_personalization.np = backend.conv(backend_personalization.np, M) training, validation = split(backend_personalization, 0.8) training1, training2 = split(training, 0.5) propagated = [training1.np, training2.np] measures = [ self.measure(backend_personalization, training1), self.measure(backend_personalization, training2) ] #measures = [self.measure(validation, training), self.measure(training, validation)] if self.basis == "krylov": for i in range(len(measure_values)): measure_values[i] = [ measure(p) for p, measure in zip(propagated, measures) ] propagated = [backend.conv(p, M) for p in propagated] else: basis = [ arnoldi_iteration(M, p, len(measure_values))[0] for p in propagated ] for i in range(len(measure_values)): measure_values[i] = [ float(measure(base[:, i])) for base, measure in zip(basis, measures) ] measure_values = backend.to_primitive(measure_values) mean_value = backend.mean(measure_values, axis=0) measure_values = measure_values - mean_value best_parameters = measure_values measure_weights = [1] * measure_values.shape[1] if self.autoregression != 0: #vals2 = -measure_values-mean_value #measure_values = np.concatenate([measure_values, vals2-np.mean(vals2, axis=0)], axis=1) window = backend.repeat(1. / self.autoregression, self.autoregression) beta1 = 0.9 beta2 = 0.999 beta1t = 1 beta2t = 1 rms = window * 0 momentum = window * 0 error = float('inf') while True: beta1t *= beta1 beta2t *= beta2 prev_error = error parameters = backend.copy(measure_values) for i in range(len(measure_values) - len(window) - 2, -1, -1): parameters[i, :] = backend.dot( (window), measure_values[(i + 1):(i + len(window) + 1), :]) errors = (parameters - measure_values ) * measure_weights / backend.sum(measure_weights) for j in range(len(window)): gradient = 0 for i in range(len(measure_values) - len(window) - 1): gradient += backend.dot(measure_values[i + j + 1, :], errors[i, :]) momentum[j] = beta1 * momentum[j] + ( 1 - beta1) * gradient #*np.sign(window[j]) rms[j] = beta2 * rms[j] + (1 - beta2) * gradient * gradient window[j] -= 0.01 * momentum[j] / (1 - beta1t) / ( (rms[j] / (1 - beta2t))**0.5 + 1.E-8) #window[j] -= 0.01*gradient*np.sign(window[j]) error = backend.mean(backend.abs(errors)) if error == 0 or abs(error - prev_error) / error < 1.E-6: best_parameters = parameters break best_parameters = backend.mean(best_parameters[:self.num_parameters, :] * backend.to_primitive(measure_weights), axis=1) + backend.mean(mean_value) if self.tunable_offset is not None: div = backend.max(best_parameters) if div != 0: best_parameters /= div measure = self.tunable_offset(validation, training) base = basis[0] if self.basis != "krylov" else None best_offset = optimize( lambda params: -measure.best_direction() * measure( self._run(training, [(best_parameters[i] + params[ 2]) * params[0]**i + params[1] for i in range( len(best_parameters))], base, *args, **kwargs)), #lambda params: - measure.evaluate(self._run(training, best_parameters + params[0], *args, **kwargs)), max_vals=[1, 0, 0], min_vals=[0, 0, 0], deviation_tol=0.005, parameter_tol=1, partitions=5, divide_range=2) #best_parameters += best_offset[0] best_parameters = [ (best_parameters[i] + best_offset[2]) * best_offset[0]**i + best_offset[1] for i in range(len(best_parameters)) ] best_parameters = backend.to_primitive(best_parameters) if backend.sum(backend.abs(best_parameters)) != 0: best_parameters /= backend.mean(backend.abs(best_parameters)) if self.tuning_backend is not None and self.tuning_backend != previous_backend: best_parameters = [ float(param) for param in best_parameters ] # convert parameters to backend-independent list backend.load_backend(previous_backend) #kwargs["graph_dropout"] = graph_dropout if self.basis != "krylov": return Tautology(), self._run( personalization, best_parameters, *args, **kwargs) # TODO: make this unecessary return self.ranker_generator(best_parameters), personalization
def benchmark(algorithms: Mapping[str, NodeRanking], datasets: Any, metric: Union[Callable[[nx.Graph], Measure], Callable[[GraphSignal, GraphSignal], Measure]] = AUC, fraction_of_training: Union[float, Iterable[float]] = 0.5, sensitive: Optional[Union[Callable[[nx.Graph], Measure], Callable[[GraphSignal, GraphSignal], Measure]]] = None, seed: Union[int, Iterable[int]] = 0): """ Compares the outcome of provided algorithms on given datasets using a desired metric. Args: algorithms: A map from names to node ranking algorithms to compare. datasets: A list of datasets to compare the algorithms on. List elements should either be strings or (string, num) tuples indicating the dataset name and number of community of interest respectively. metric: A method to instantiate a measure type to assess the efficacy of algorithms with. fraction_of_training: The fraction of training samples to split on. The rest are used for testing. An iterable of floats can also be provided to experiment with multiple fractions. sensitive: Optinal. A generator of sensitivity-aware supervised or unsupervised measures. Could be None (default). seed: A seed to ensure reproducibility. Default is 0. An iterable of floats can also be provided to experimet with multiple seeds. Returns: Yields an array of outcomes. Is meant to be used with wrapping methods, such as print_benchmark. Example: >>> import pygrank as pg >>> algorithms = ... >>> datasets = ... >>> pg.benchmark_print(pg.benchmark(algorithms, datasets)) """ if sensitive is not None: yield [""] + [algorithm for algorithm in algorithms for suffix in [metric.__name__, sensitive.__name__]] yield [""] + [suffix for algorithm in algorithms for suffix in [metric.__name__, sensitive.__name__]] else: yield [""] + [algorithm for algorithm in algorithms] seeds = [seed] if isinstance(seed, int) else seed fraction_of_training = [fraction_of_training] if isinstance(fraction_of_training, float) else fraction_of_training for name, graph, group in datasets: for training_samples in fraction_of_training: for seed in seeds: multigroup = isinstance(group, collections.abc.Mapping) and not isinstance(group, GraphSignal) training, evaluation = split(group, training_samples=training_samples, seed=seed) if sensitive is None and multigroup: training = {group_id: to_signal(graph,{v: 1 for v in group}) for group_id, group in training.items()} evaluation = {group_id: to_signal(graph,{v: 1 for v in group}) for group_id, group in evaluation.items()} rank = lambda algorithm: {group_id: algorithm(graph, group) for group_id, group in training.items()} else: if multigroup: training = training[0] evaluation = evaluation[0] sensitive_signal = to_signal(graph, {v: 1 for v in group[max(group.keys())]}) training, evaluation = to_signal(graph, {v: 1 for v in training}), to_signal(graph, {v: 1 for v in evaluation}) else: training, evaluation = to_signal(graph, {v: 1 for v in training}), to_signal(graph, {v: 1 for v in evaluation}) if sensitive is not None: if not multigroup: sensitive_signal = to_signal(training, 1-evaluation.np) #training.np = training.np*(1-sensitive_signal.np) rank = lambda algorithm: algorithm(graph, training, sensitive=sensitive_signal) else: rank = lambda algorithm: algorithm(graph, training) dataset_results = [name] for algorithm in algorithms.values(): if metric == Time: tic = time() predictions = rank(algorithm) dataset_results.append(time()-tic) else: predictions = rank(algorithm) try: dataset_results.append(metric(graph)(predictions)) except: dataset_results.append(metric(evaluation, training)(predictions)) if sensitive is not None: try: dataset_results.append(sensitive(sensitive_signal, training)(predictions)) except: dataset_results.append(sensitive(evaluation, sensitive_signal, training)(predictions)) yield dataset_results