Example #1
0
    def visualize(self, U, codim=2, **kwargs):
        """Visualize scalar data associated to the grid as a patch plot.

        Parameters
        ----------
        U
            |NumPy array| of the data to visualize. If `U.dim == 2 and len(U) > 1`, the
            data is visualized as a time series of plots. Alternatively, a tuple of
            |Numpy arrays| can be provided, in which case a subplot is created for
            each entry of the tuple. The lengths of all arrays have to agree.
        codim
            The codimension of the entities the data in `U` is attached to (either 0 or 2).
        kwargs
            See :func:`~pymor.gui.qt.visualize_patch`
        """
        from pymor.gui.qt import visualize_patch
        from pymor.vectorarrays.interfaces import VectorArrayInterface
        from pymor.vectorarrays.numpy import NumpyVectorArray
        if isinstance(U, (np.ndarray, VectorArrayInterface)):
            U = (U,)
        assert all(isinstance(u, (np.ndarray, VectorArrayInterface)) for u in U)
        U = tuple(NumpyVectorArray(u) if isinstance(u, np.ndarray) else
                  u if isinstance(u, NumpyVectorArray) else
                  NumpyVectorArray(u.data)
                  for u in U)
        bounding_box = kwargs.pop('bounding_box', self.domain)
        visualize_patch(self, U, codim=codim, bounding_box=bounding_box, **kwargs)
Example #2
0
    def visualize(self, U, codim=2, **kwargs):
        """Visualize scalar data associated to the grid as a patch plot.

        Parameters
        ----------
        U
            |VectorArray| of the data to visualize. If `len(U) > 1`, the data is visualized
            as a time series of plots. Alternatively, a tuple of |VectorArrays| can be
            provided, in which case a subplot is created for each entry of the tuple. The
            lengths of all arrays have to agree.
        codim
            The codimension of the entities the data in `U` is attached to (either 0 or 2).
        kwargs
            See :func:`~pymor.gui.qt.visualize_patch`
        """
        from pymor.gui.qt import visualize_patch
        from pymor.la.numpyvectorarray import NumpyVectorArray
        if not isinstance(U, NumpyVectorArray):
            U = NumpyVectorArray(U, copy=False)
        bounding_box = kwargs.pop('bounding_box', self.domain)
        visualize_patch(self,
                        U,
                        codim=codim,
                        bounding_box=bounding_box,
                        **kwargs)
Example #3
0
File: gui.py Project: sdrave/pymor
def test_visualize_patch(backend_gridtype):
    backend, gridtype = backend_gridtype
    domain = LineDomain() if gridtype is OnedGrid else RectDomain()
    dim = 1 if gridtype is OnedGrid else 2
    rhs = GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, dim)  # NOQA
    dirichlet = GenericFunction(lambda X: np.zeros(X.shape[:-1]), dim)  # NOQA
    diffusion = GenericFunction(lambda X: np.ones(X.shape[:-1]), dim)  # NOQA
    problem = EllipticProblem(domain=domain, rhs=rhs, dirichlet_data=dirichlet, diffusion_functions=(diffusion,))
    grid, bi = discretize_domain_default(problem.domain, grid_type=gridtype)
    discretization, data = discretize_elliptic_cg(analytical_problem=problem, grid=grid, boundary_info=bi)
    U = discretization.solve()
    visualize_patch(data['grid'], U=U, backend=backend)
    sleep(2)  # so gui has a chance to popup
    stop_gui_processes()
Example #4
0
def test_visualize_patch(backend_gridtype):
    backend, gridtype = backend_gridtype
    domain = LineDomain() if gridtype is OnedGrid else RectDomain()
    dim = 1 if gridtype is OnedGrid else 2
    rhs = GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, dim)  # NOQA
    dirichlet = GenericFunction(lambda X: np.zeros(X.shape[:-1]), dim)  # NOQA
    diffusion = GenericFunction(lambda X: np.ones(X.shape[:-1]), dim)  # NOQA
    problem = StationaryProblem(domain=domain, rhs=rhs, dirichlet_data=dirichlet, diffusion=diffusion)
    grid, bi = discretize_domain_default(problem.domain, grid_type=gridtype)
    discretization, data = discretize_stationary_cg(analytical_problem=problem, grid=grid, boundary_info=bi)
    U = discretization.solve()
    try:
        visualize_patch(data['grid'], U=U, backend=backend)
    except PySideMissing as ie:
        pytest.xfail("PySide missing")
    finally:
        stop_gui_processes()
Example #5
0
def test_visualize_patch(backend_gridtype):
    backend, gridtype = backend_gridtype
    domain = LineDomain() if gridtype is OnedGrid else RectDomain()
    dim = 1 if gridtype is OnedGrid else 2
    rhs = GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, dim)  # NOQA
    dirichlet = GenericFunction(lambda X: np.zeros(X.shape[:-1]), dim)  # NOQA
    diffusion = GenericFunction(lambda X: np.ones(X.shape[:-1]), dim)  # NOQA
    problem = StationaryProblem(domain=domain, rhs=rhs, dirichlet_data=dirichlet, diffusion=diffusion)
    grid, bi = discretize_domain_default(problem.domain, grid_type=gridtype)
    d, data = discretize_stationary_cg(analytical_problem=problem, grid=grid, boundary_info=bi)
    U = d.solve()
    try:
        visualize_patch(data['grid'], U=U, backend=backend)
    except QtMissing as ie:
        pytest.xfail("Qt missing")
    finally:
        stop_gui_processes()
Example #6
0
def test_visualize_patch(backend_gridtype):
    backend, gridtype = backend_gridtype
    domain = LineDomain() if gridtype is OnedGrid else RectDomain()
    dim = 1 if gridtype is OnedGrid else 2
    rhs = GenericFunction(lambda X: np.ones(X.shape[:-1]) * 10, dim)  # NOQA
    dirichlet = GenericFunction(lambda X: np.zeros(X.shape[:-1]), dim)  # NOQA
    diffusion = GenericFunction(lambda X: np.ones(X.shape[:-1]), dim)  # NOQA
    problem = EllipticProblem(domain=domain,
                              rhs=rhs,
                              dirichlet_data=dirichlet,
                              diffusion_functions=(diffusion, ))
    grid, bi = discretize_domain_default(problem.domain, grid_type=gridtype)
    discretization, data = discretize_elliptic_cg(analytical_problem=problem,
                                                  grid=grid,
                                                  boundary_info=bi)
    U = discretization.solve()
    visualize_patch(data['grid'], U=U, backend=backend)
    sleep(2)  # so gui has a chance to popup
    for child in multiprocessing.active_children():
        child.terminate()
Example #7
0
File: tria.py Project: sdrave/pymor
    def visualize(self, U, codim=2, **kwargs):
        """Visualize scalar data associated to the grid as a patch plot.

        Parameters
        ----------
        U
            |VectorArray| of the data to visualize. If `len(U) > 1`, the data is visualized
            as a time series of plots. Alternatively, a tuple of |VectorArrays| can be
            provided, in which case a subplot is created for each entry of the tuple. The
            lengths of all arrays have to agree.
        codim
            The codimension of the entities the data in `U` is attached to (either 0 or 2).
        kwargs
            See :func:`~pymor.gui.qt.visualize_patch`
        """
        from pymor.gui.qt import visualize_patch
        from pymor.vectorarrays.numpy import NumpyVectorArray
        if not isinstance(U, NumpyVectorArray):
            U = NumpyVectorArray(U, copy=False)
        bounding_box = kwargs.pop('bounding_box', self.domain)
        visualize_patch(self, U, codim=codim, bounding_box=bounding_box, **kwargs)