def make_analysis_polar_map(config, mesh_name, projection):
    # {{{
    mesh_filename = '../mesh.nc'

    upperProj = projection[0].upper() + projection[1:]

    inDescriptor = MpasMeshDescriptor(mesh_filename, mesh_name)

    comparisonStereoWidth = config.getfloat(
        'mapping_analysis', 'comparison{}StereoWidth'.format(upperProj))
    comparisonStereoResolution = config.getfloat(
        'mapping_analysis', 'comparison{}StereoResolution'.format(upperProj))

    outDescriptor = get_polar_descriptor(Lx=comparisonStereoWidth,
                                         Ly=comparisonStereoWidth,
                                         dx=comparisonStereoResolution,
                                         dy=comparisonStereoResolution,
                                         projection=projection)

    outGridName = '{}x{}km_{}km_{}_stereo'.format(comparisonStereoWidth,
                                                  comparisonStereoWidth,
                                                  comparisonStereoResolution,
                                                  upperProj)

    mappingFileName = 'map_{}_to_{}_bilinear.nc'.format(mesh_name, outGridName)

    remapper = Remapper(inDescriptor, outDescriptor, mappingFileName)

    mpiTasks = config.getint('main', 'nprocs')
    remapper.build_mapping_file(method='bilinear',
                                mpiTasks=mpiTasks,
                                tempdir='.')
Example #2
0
    def build_remapper(self, sourceDescriptor, destinationDescriptor,
                       weightFileName):

        remapper = Remapper(sourceDescriptor, destinationDescriptor,
                            weightFileName)

        remapper.build_mapping_file(method='bilinear')

        assert os.path.exists(remapper.mappingFileName)

        return remapper
Example #3
0
def _make_mapping_file(mesh_name, outGridName, inDescriptor, outDescriptor,
                       cores, config, logger):

    parallel_executable = config.get('parallel', 'parallel_executable')

    mappingFileName = 'map_{}_to_{}_bilinear.nc'.format(mesh_name, outGridName)

    remapper = Remapper(inDescriptor, outDescriptor, mappingFileName)

    remapper.build_mapping_file(method='bilinear', mpiTasks=cores, tempdir='.',
                                logger=logger,
                                esmf_parallel_exec=parallel_executable)
Example #4
0
def make_analysis_lat_lon_map(config, mesh_name):
    # {{{
    mesh_filename = '../mesh.nc'

    inDescriptor = MpasMeshDescriptor(mesh_filename, mesh_name)

    comparisonLatResolution = config.getfloat('mapping_analysis',
                                              'comparisonLatResolution')
    comparisonLonResolution = config.getfloat('mapping_analysis',
                                              'comparisonLonResolution')

    # modify the resolution of the global lat-lon grid as desired
    outDescriptor = get_lat_lon_descriptor(dLon=comparisonLatResolution,
                                           dLat=comparisonLonResolution)
    outGridName = outDescriptor.meshName

    mappingFileName = 'map_{}_to_{}_bilinear.nc'.format(mesh_name, outGridName)

    remapper = Remapper(inDescriptor, outDescriptor, mappingFileName)

    mpiTasks = config.getint('main', 'nprocs')
    remapper.build_mapping_file(method='bilinear', mpiTasks=mpiTasks,
                                tempdir='.')
def remap_rignot(inFileName,
                 meshFileName,
                 meshName,
                 outFileName,
                 mappingDirectory='.',
                 method='conserve',
                 renormalizationThreshold=None,
                 inVarName='melt_actual',
                 mpiTasks=1):
    # {{{
    """
    Remap the Rignot et al. (2013) melt rates at 1 km resolution to an MPAS
    mesh

    Parameters
    ----------
    inFileName : str
        The original Rignot et al. (2013) melt rates

    meshFileName : str
        The MPAS mesh

    meshName : str
        The name of the mesh (e.g. oEC60to30wISC), used in the name of the
        mapping file

    outFileName : str
        The melt rates interpolated to the MPAS mesh with ocean sensible heat
        fluxes added on (assuming insulating ice)

    mappingDirectory : str
        The directory where the mapping file should be stored (if it is to be
        computed) or where it already exists (if not)

    method : {'bilinear', 'neareststod', 'conserve'}, optional
        The method of interpolation used, see documentation for
        `ESMF_RegridWeightGen` for details.

    renormalizationThreshold : float, optional
        The minimum weight of a denstination cell after remapping, below
        which it is masked out, or ``None`` for no renormalization and
        masking.

    inVarName : {'melt_actual', 'melt_steadystate'}
        Whether to use the melt rate for the time period covered in Rignot et
        al. (2013) with observed thinning/thickening or the melt rates that
        would be required if ice shelves were in steady state.

    mpiTasks : int, optional
        The number of MPI tasks to use to compute the mapping file
    """

    ds = xr.open_dataset(inFileName)
    lx = np.abs(1e-3 * (ds.xaxis.values[-1] - ds.xaxis.values[0]))
    ly = np.abs(1e-3 * (ds.yaxis.values[-1] - ds.yaxis.values[0]))

    inGridName = '{}x{}km_1.0km_Antarctic_stereo'.format(lx, ly)

    projection = pyproj.Proj('+proj=stere +lat_ts=-71.0 +lat_0=-90 +lon_0=0.0 '
                             '+k_0=1.0 +x_0=0.0 +y_0=0.0 +ellps=WGS84')

    inDescriptor = ProjectionGridDescriptor.read(projection,
                                                 inFileName,
                                                 xVarName='xaxis',
                                                 yVarName='yaxis',
                                                 meshName=inGridName)

    # convert to the units and variable names expected in MPAS-O
    rho_fw = 1000.
    s_per_yr = 365. * 24. * 60. * 60.
    latent_heat_of_fusion = 3.337e5
    ds['prescribedLandIceFreshwaterFlux'] = ds[inVarName] * rho_fw / s_per_yr
    ds['prescribedLandIceHeatFlux'] = (latent_heat_of_fusion *
                                       ds['prescribedLandIceFreshwaterFlux'])
    ds = ds.drop_vars(['melt_actual', 'melt_steadystate', 'lon', 'lat'])

    outDescriptor = MpasMeshDescriptor(meshFileName, meshName)

    mappingFileName = '{}/map_{}_to_{}.nc'.format(mappingDirectory, inGridName,
                                                  meshName)

    remapper = Remapper(inDescriptor, outDescriptor, mappingFileName)

    remapper.build_mapping_file(method=method, mpiTasks=mpiTasks)

    dsRemap = remapper.remap(ds,
                             renormalizationThreshold=renormalizationThreshold)

    for field in [
            'prescribedLandIceFreshwaterFlux', 'prescribedLandIceHeatFlux'
    ]:
        # zero out the field where it's currently NaN
        dsRemap[field] = dsRemap[field].where(dsRemap[field].nonnull(), 0.)

    dsRemap.attrs['history'] = ' '.join(sys.argv)
    write_netcdf(dsRemap, outFileName)  # }}}
def get_remapper(config, sourceDescriptor, comparisonDescriptor,
                 mappingFilePrefix, method, logger=None):  # {{{
    """
    Given config options and descriptions of the source and comparison grids,
    returns a ``pyremap.Remapper`` object that can be used to remap from source
    files or data sets to corresponding data sets on the comparison grid.

    If necessary, creates the mapping file containing weights and indices
    needed to perform remapping.

    Parameters
    ----------
    config :  instance of ``MpasAnalysisConfigParser``
        Contains configuration options

    sourceDescriptor : ``MeshDescriptor`` subclass object
        A description of the source mesh or grid

    comparisonDescriptor : ``MeshDescriptor`` subclass object
        A description of the comparison grid

    mappingFilePrefix : str
        A prefix to be prepended to the mapping file name

    method : {'bilinear', 'neareststod', 'conserve'}
        The method of interpolation used.

    logger : ``logging.Logger``, optional
        A logger to which ncclimo output should be redirected

    Returns
    -------
    remapper : ``pyremap.Remapper`` object
        A remapper that can be used to remap files or data sets from the source
        grid or mesh to the comparison grid.
    """
    # Authors
    # -------
    # Xylar Asay-Davis

    mappingFileName = None

    if not _matches_comparison(sourceDescriptor, comparisonDescriptor):
        # we need to remap because the grids don't match

        mappingBaseName = '{}_{}_to_{}_{}.nc'.format(
            mappingFilePrefix,
            sourceDescriptor.meshName,
            comparisonDescriptor.meshName,
            method)

        tryCustom = config.get('diagnostics', 'customDirectory') != 'none'
        if tryCustom:
            # first see if mapping files are in the custom directory
            mappingSubdirectory = build_config_full_path(
                config, 'diagnostics', 'mappingSubdirectory',
                baseDirectoryOption='customDirectory')

            mappingFileName = '{}/{}'.format(mappingSubdirectory,
                                         mappingBaseName)
        if not tryCustom or not os.path.exists(mappingFileName):
            # second see if mapping files are in the base directory

            mappingSubdirectory = build_config_full_path(
                config, 'diagnostics', 'mappingSubdirectory',
                baseDirectoryOption='baseDirectory')

            mappingFileName = '{}/{}'.format(mappingSubdirectory,
                                             mappingBaseName)

        if not os.path.exists(mappingFileName):
            # we don't have a mapping file yet, so get ready to create one
            # in the output subfolder if needed
            mappingSubdirectory = \
                build_config_full_path(config, 'output',
                                       'mappingSubdirectory')
            make_directories(mappingSubdirectory)
            mappingFileName = '{}/{}'.format(mappingSubdirectory,
                                             mappingBaseName)

    remapper = Remapper(sourceDescriptor, comparisonDescriptor,
                        mappingFileName)

    remapper.build_mapping_file(method=method, logger=logger)

    return remapper  # }}}
Example #7
0
from pyremap import LatLonGridDescriptor, Remapper

from mpas_analysis.shared.constants import constants

inputFileName = '/media/xylar/extra_data/analysis/output/GMPAS-QU240/' \
    'remap_obs/clim/obs/mld_1.0x1.0degree.nc'

obsDescriptor = LatLonGridDescriptor.read(fileName=inputFileName,
                                          latVarName='lat',
                                          lonVarName='lon')

comparisonLatRes = 4.
comparisonLonRes = 4.

nLat = int((constants.latmax - constants.latmin) / comparisonLatRes) + 1
nLon = int((constants.lonmax - constants.lonmin) / comparisonLonRes) + 1
lat = numpy.linspace(constants.latmin, constants.latmax, nLat)
lon = numpy.linspace(constants.lonmin, constants.lonmax, nLon)

comparisonDescriptor = LatLonGridDescriptor.create(lat, lon, units='degrees')

remapper = Remapper(obsDescriptor,
                    comparisonDescriptor,
                    mappingFileName='map.nc')

remapper.build_mapping_file()

remapper.remap_file(inputFileName,
                    'mld_4.0x4.0degree.nc', ['mld', 'month', 'year'],
                    renormalize=0.05)
def _remap(config, modelFolder):

    res = get_res(config)
    hres = get_horiz_res(config)
    modelName = config.get('model', 'name')

    inFileNames = {}
    outFileNames = {}
    bothExist = True
    for fieldName in ['temperature', 'salinity']:
        inFileNames[fieldName] = \
            '{}/{}_{}_interp_z.nc'.format(modelFolder, modelName, fieldName)

        outFileNames[fieldName] = \
            '{}/{}_{}_{}.nc'.format(modelFolder, modelName, fieldName, res)
        if not os.path.exists(outFileNames[fieldName]):
            bothExist = False

    if bothExist:
        return

    print('  Remapping to {} grid...'.format(res))
    for fieldName in inFileNames:
        inFileName = inFileNames[fieldName]
        outFileName = outFileNames[fieldName]
        if os.path.exists(outFileName):
            continue
        outGridFileName = 'ismip6/{}_grid.nc'.format(hres)
        print('    {}'.format(outFileName))
        progressDir = '{}/progress_remap_{}'.format(modelFolder, fieldName)

        try:
            os.makedirs(progressDir)
        except OSError:
            pass

        ds = xarray.open_dataset(inFileName)

        if len(ds.lon.dims) == 1:
            inDescriptor = LatLonGridDescriptor.read(inFileName,
                                                     latVarName='lat',
                                                     lonVarName='lon')
        else:
            assert (len(ds.lon.dims) == 2)
            inDescriptor = LatLon2DGridDescriptor.read(inFileName,
                                                       latVarName='lat',
                                                       lonVarName='lon')
        inDescriptor.regional = True
        outDescriptor = get_polar_descriptor_from_file(outGridFileName,
                                                       projection='antarctic')

        mappingFileName = '{}/map_{}_to_{}.nc'.format(modelName.lower(),
                                                      inDescriptor.meshName,
                                                      outDescriptor.meshName)

        remapper = Remapper(inDescriptor, outDescriptor, mappingFileName)

        remapper.build_mapping_file(method='bilinear')

        ds = ds.drop_vars(['lat', 'lon'])

        nt = ds.sizes['time']

        widgets = [
            '  ',
            progressbar.Percentage(), ' ',
            progressbar.Bar(), ' ',
            progressbar.ETA()
        ]
        print(f' remapping: {fieldName}')
        bar = progressbar.ProgressBar(widgets=widgets, maxval=nt).start()

        for tIndex in range(nt):
            progressFileName = '{}/{}_t_{}.nc'.format(progressDir, modelName,
                                                      tIndex)
            if os.path.exists(progressFileName):
                bar.update(tIndex + 1)
                continue

            dsIn = ds.isel(time=tIndex)
            dsOut = remapper.remap(dsIn, renormalizationThreshold=0.1)

            dsOut = dsOut.transpose('z', 'y', 'x')

            for attrName in ['units', 'standard_name', 'long_name']:
                if attrName in ds[fieldName].attrs:
                    dsOut[fieldName].attrs[attrName] = \
                        ds[fieldName].attrs[attrName]
            dsOut.z.attrs = ds.z.attrs

            dsOut.to_netcdf(progressFileName)

            bar.update(tIndex + 1)
        bar.finish()

        dsOut = xarray.open_mfdataset('{}/{}_t_*.nc'.format(
            progressDir, modelName),
                                      combine='nested',
                                      concat_dim='time')

        dsOut['z_bnds'] = ds.z_bnds

        dsOut.to_netcdf(outFileName)
inGridName = 'oQU240'

# replace with the path to the desired mesh or restart file
# As an example, use:
# https://web.lcrc.anl.gov/public/e3sm/inputdata/ocn/mpas-o/oQU240/ocean.QU.240km.151209.nc
inGridFileName = 'ocean.QU.240km.151209.nc'

inDescriptor = MpasMeshDescriptor(inGridFileName, inGridName)

# modify the size and resolution of the Antarctic grid as desired
outDescriptor = get_polar_descriptor(Lx=6000.,
                                     Ly=6000.,
                                     dx=10.,
                                     dy=10.,
                                     projection='antarctic')
outGridName = outDescriptor.meshName

mappingFileName = 'map_{}_to_{}_conserve.nc'.format(inGridName, outGridName)

remapper = Remapper(inDescriptor, outDescriptor, mappingFileName)

# conservative remapping with 4 MPI tasks (using mpirun)
remapper.build_mapping_file(method='conserve', mpiTasks=4)

outFileName = 'temp_{}.nc'.format(outGridName)
ds = xarray.open_dataset(inGridFileName)
dsOut = xarray.Dataset()
dsOut['temperature'] = ds['temperature']
dsOut = remapper.remap(dsOut)
dsOut.to_netcdf(outFileName)
Example #10
0
inDescriptor = MpasMeshDescriptor(inGridFileName, inGridName)

# modify the size and resolution of the Antarctic grid as desired
outDescriptor = get_polar_descriptor(Lx=6000.,
                                     Ly=5000.,
                                     dx=10.,
                                     dy=10.,
                                     projection='antarctic')
outGridName = outDescriptor.meshName

mappingFileName = 'map_{}_to_{}_bilinear.nc'.format(inGridName, outGridName)

remapper = Remapper(inDescriptor, outDescriptor, mappingFileName)

# conservative remapping with 4 MPI tasks (using mpirun)
remapper.build_mapping_file(method='bilinear', mpiTasks=4)

# select the SST at the initial time as an example data set
srcFileName = 'temp_{}.nc'.format(inGridName)
ds = xarray.open_dataset(inGridFileName)
dsOut = xarray.Dataset()
dsOut['temperature'] = ds['temperature'].isel(nVertLevels=0, Time=0)
dsOut.to_netcdf(srcFileName)

# do remapping with ncremap
outFileName = 'temp_{}_file.nc'.format(outGridName)
remapper.remap_file(srcFileName, outFileName)

# do remapping again, this time with python remapping
outFileName = 'temp_{}_array.nc'.format(outGridName)
dsOut = remapper.remap(dsOut)
Example #11
0
Ly = int((y[-1] - y[0]) / 1000.)

inMeshName = '{}x{}km_{}km_Antarctic_stereo'.format(Lx, Ly, dx)

projection = get_antarctic_stereographic_projection()

inDescriptor = ProjectionGridDescriptor.create(projection, x, y, inMeshName)

outRes = args.resolution * 1e3

nxOut = int((x[-1] - x[0]) / outRes + 0.5) + 1
nyOut = int((y[-1] - y[0]) / outRes + 0.5) + 1

xOut = x[0] + outRes * numpy.arange(nxOut)
yOut = y[0] + outRes * numpy.arange(nyOut)

outMeshName = '{}x{}km_{}km_Antarctic_stereo'.format(Lx, Ly, args.resolution)

outDescriptor = ProjectionGridDescriptor.create(projection, xOut, yOut,
                                                outMeshName)

mappingFileName = 'map_{}_to_{}_{}.nc'.format(inMeshName, outMeshName,
                                              args.method)

remapper = Remapper(inDescriptor, outDescriptor, mappingFileName)

remapper.build_mapping_file(method=args.method, mpiTasks=args.mpiTasks)

dsOut = remapper.remap(dsIn, renormalizationThreshold=0.01)
dsOut.to_netcdf(args.outFileName)