Example #1
0
def test_binary_grid_unaries():
    # test handling on unaries for binary grid CRFs
    for ds in binary:
        X, Y = ds(n_samples=1)
        x, y = X[0], Y[0]
        for inference_method in get_installed():
            # dai is to expensive
            crf = GridCRF(inference_method=inference_method)
            crf.initialize(X, Y)
            w_unaries_only = np.zeros(7)
            w_unaries_only[:4] = np.eye(2).ravel()
            # test that inference with unaries only is the
            # same as argmax
            inf_unaries = crf.inference(x, w_unaries_only)

            assert_array_equal(inf_unaries, np.argmax(x, axis=2),
                               "Wrong unary inference for %s"
                               % inference_method)
            try:
                assert(np.mean(inf_unaries == y) > 0.5)
            except:
                print(ds)

            # check that the right thing happens on noise-free data
            X, Y = ds(n_samples=1, noise=0)
            inf_unaries = crf.inference(X[0], w_unaries_only)
            assert_array_equal(inf_unaries, Y[0],
                               "Wrong unary result for %s"
                               % inference_method)
Example #2
0
def test_binary_grid_unaries():
    # test handling on unaries for binary grid CRFs
    for ds in binary:
        X, Y = ds(n_samples=1)
        x, y = X[0], Y[0]
        for inference_method in get_installed():
            # dai is to expensive
            crf = GridCRF(inference_method=inference_method)
            crf.initialize(X, Y)
            w_unaries_only = np.zeros(7)
            w_unaries_only[:4] = np.eye(2).ravel()
            # test that inference with unaries only is the
            # same as argmax
            inf_unaries = crf.inference(x, w_unaries_only)

            assert_array_equal(
                inf_unaries, np.argmax(x, axis=2),
                "Wrong unary inference for %s" % inference_method)
            try:
                assert (np.mean(inf_unaries == y) > 0.5)
            except:
                print(ds)

            # check that the right thing happens on noise-free data
            X, Y = ds(n_samples=1, noise=0)
            inf_unaries = crf.inference(X[0], w_unaries_only)
            assert_array_equal(inf_unaries, Y[0],
                               "Wrong unary result for %s" % inference_method)
Example #3
0
def test_binary_grid_unaries():
    # test handling on unaries for binary grid CRFs
    for ds in binary:
        X, Y = ds(n_samples=1)
        x, y = X[0], Y[0]
        for inference_method in get_installed():
            #NOTE: ad3+ fails because it requires a different data structure
            if inference_method == 'ad3+': continue            
            crf = GridCRF(inference_method=inference_method)
            crf.initialize(X, Y)
            w_unaries_only = np.zeros(7)
            w_unaries_only[:4] = np.eye(2).ravel()
            # test that inference with unaries only is the
            # same as argmax
            inf_unaries = crf.inference(x, w_unaries_only)

            assert_array_equal(inf_unaries, np.argmax(x, axis=2),
                               "Wrong unary inference for %s"
                               % inference_method)
            assert(np.mean(inf_unaries == y) > 0.5)

            # check that the right thing happens on noise-free data
            X, Y = ds(n_samples=1, noise=0)
            inf_unaries = crf.inference(X[0], w_unaries_only)
            assert_array_equal(inf_unaries, Y[0],
                               "Wrong unary result for %s"
                               % inference_method)
Example #4
0
def test_blocks_multinomial_crf():
    X, Y = generate_blocks_multinomial(n_samples=1, size_x=9, seed=0)
    x, y = X[0], Y[0]
    w = np.array([
        1.,
        0.,
        0.,  # unaryA
        0.,
        1.,
        0.,
        0.,
        0.,
        1.,
        .4,  # pairwise
        -.3,
        .3,
        -.5,
        -.1,
        .3
    ])
    for inference_method in get_installed():
        crf = GridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
Example #5
0
def test_max_product_multinomial_crf():
    X, Y = generate_blocks_multinomial(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.4, -0.3, 0.3, -0.5, -0.1, 0.3])  # unary  # pairwise
    crf = GridCRF(inference_method="max-product")
    crf.initialize(X, Y)
    y_hat = crf.inference(x, w)
    assert_array_equal(y, y_hat)
Example #6
0
def test_binary_blocks_crf_n8_lp():
    X, Y = generate_blocks(n_samples=1, noise=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0, 0, 1, 1, -1.4, 1])  # unary  # pairwise
    crf = GridCRF(neighborhood=8)
    crf.initialize(X, Y)
    y_hat = crf.inference(x, w)
    assert_array_equal(y, y_hat)
Example #7
0
def test_max_product_binary_blocks():
    X, Y = generate_blocks(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0, 0, 1, 0, -4, 0])  # unary  # pairwise
    crf = GridCRF(inference_method="max-product")
    crf.initialize(X, Y)
    y_hat = crf.inference(x, w)
    assert_array_equal(y, y_hat)
Example #8
0
def test_blocks_multinomial_crf():
    X, Y = generate_blocks_multinomial(n_samples=1, size_x=9, seed=0)
    x, y = X[0], Y[0]
    w = np.array([1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.4, -0.3, 0.3, -0.5, -0.1, 0.3])  # unaryA  # pairwise
    for inference_method in get_installed():
        crf = GridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
Example #9
0
def test_binary_blocks_crf():
    X, Y = generate_blocks(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0, 0, 1, 0, -4, 0])  # unary  # pairwise
    for inference_method in get_installed(["dai", "qpbo", "lp", "ad3", "ogm"]):
        crf = GridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
Example #10
0
def test_binary_blocks_crf_n8_lp():
    X, Y = toy.generate_blocks(n_samples=1, noise=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0,  # unary
                  0, 1,
                  1,     # pairwise
                  -1.4, 1])
    crf = GridCRF(inference_method="lp", neighborhood=8)
    y_hat = crf.inference(x, w)
    assert_array_equal(y, y_hat)
Example #11
0
def test_binary_blocks_crf_n8_lp():
    X, Y = generate_blocks(n_samples=1, noise=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0,  # unary
                  0, 1,
                  1,     # pairwise
                  -1.4, 1])
    crf = GridCRF(neighborhood=8)
    crf.initialize(X, Y)
    y_hat = crf.inference(x, w)
    assert_array_equal(y, y_hat)
Example #12
0
def test_multinomial_grid_unaries():
    # test handling on unaries for multinomial grid CRFs
    # on multinomial datasets
    for ds in multinomial:
        X, Y = ds(n_samples=1, size_x=9)
        x, y = X[0], Y[0]
        n_labels = len(np.unique(Y))
        crf = GridCRF(n_states=n_labels)
        crf.initialize(X, Y)
        w_unaries_only = np.zeros(crf.size_psi)
        w_unaries_only[:n_labels ** 2] = np.eye(n_labels).ravel()
        # test that inference with unaries only is the
        # same as argmax
        inf_unaries = crf.inference(x, w_unaries_only)

        assert_array_equal(inf_unaries, np.argmax(x, axis=2))
        # check that the right thing happens on noise-free data
        X, Y = ds(n_samples=1, noise=0)
        inf_unaries = crf.inference(X[0], w_unaries_only)
        assert_array_equal(inf_unaries, Y[0])
Example #13
0
def test_multinomial_grid_unaries():
    # test handling on unaries for multinomial grid CRFs
    # on multinomial datasets
    for ds in multinomial:
        X, Y = ds(n_samples=1, size_x=9)
        x = X[0]
        n_labels = len(np.unique(Y))
        crf = GridCRF(n_states=n_labels)
        crf.initialize(X, Y)
        w_unaries_only = np.zeros(crf.size_joint_feature)
        w_unaries_only[:n_labels**2] = np.eye(n_labels).ravel()
        # test that inference with unaries only is the
        # same as argmax
        inf_unaries = crf.inference(x, w_unaries_only)

        assert_array_equal(inf_unaries, np.argmax(x, axis=2))
        # check that the right thing happens on noise-free data
        X, Y = ds(n_samples=1, noise=0)
        inf_unaries = crf.inference(X[0], w_unaries_only)
        assert_array_equal(inf_unaries, Y[0])
Example #14
0
def test_multinomial_grid_unaries():
    # test handling on unaries for multinomial grid CRFs
    # on multinomial datasets
    for ds in toy.multinomial:
        X, Y = ds(n_samples=1)
        x, y = X[0], Y[0]
        n_labels = len(np.unique(Y))
        for inference_method in ['qpbo', 'lp', 'ad3']:  # dai is to expensive
            crf = GridCRF(n_states=n_labels, inference_method=inference_method)
            w_unaries_only = np.zeros(crf.size_psi)
            w_unaries_only[:n_labels ** 2] = np.eye(n_labels).ravel()
            # test that inference with unaries only is the
            # same as argmax
            inf_unaries = crf.inference(x, w_unaries_only)

            assert_array_equal(inf_unaries, np.argmax(x, axis=2))
            # check that the right thing happens on noise-free data
            X, Y = ds(n_samples=1, noise=0)
            inf_unaries = crf.inference(X[0], w_unaries_only)
            assert_array_equal(inf_unaries, Y[0])
Example #15
0
def test_binary_blocks_crf():
    X, Y = toy.generate_blocks(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0,  # unary
                  0, 1,
                  0,     # pairwise
                  -4, 0])
    for inference_method in ['dai', 'qpbo', 'lp', 'ad3']:
        crf = GridCRF(inference_method=inference_method)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
Example #16
0
def test_energy_lp():
    # make sure that energy as computed by ssvm is the same as by lp
    np.random.seed(0)
    found_fractional = False
    for inference_method in get_installed(["lp", "ad3"]):
        crf = GridCRF(n_states=3, n_features=4, inference_method=inference_method)
        while not found_fractional:
            x = np.random.normal(size=(2, 2, 4))
            w = np.random.uniform(size=crf.size_joint_feature)
            inf_res, energy_lp = crf.inference(x, w, relaxed=True, return_energy=True)
            assert_almost_equal(energy_lp, -np.dot(w, crf.joint_feature(x, inf_res)))
            found_fractional = np.any(np.max(inf_res[0], axis=-1) != 1)
Example #17
0
def test_binary_blocks_crf():
    X, Y = generate_blocks(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0,  # unary
                  0, 1,
                  0,     # pairwise
                  -4, 0])
    for inference_method in get_installed(['dai', 'qpbo', 'lp', 'ad3', 'ogm']):
        crf = GridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
Example #18
0
def test_binary_blocks_crf():
    X, Y = generate_blocks(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1, 0,  # unary
                  0, 1,
                  0,     # pairwise
                  -4, 0])
    for inference_method in get_installed(['dai', 'qpbo', 'lp', 'ad3', 'ogm']):
        crf = GridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
Example #19
0
def test_binary_crf_exhaustive():
    # tests qpbo inference against brute force
    # on random data / weights
    np.random.seed(0)
    for i in xrange(10):
        x = np.random.uniform(-1, 1, size=(3, 2))
        x = np.dstack([-x, np.zeros_like(x)]).copy()
        crf = GridCRF(n_features=2, n_states=2)
        w = np.random.uniform(-1, 1, size=7)
        # check map inference
        y_hat = crf.inference(x, w)
        y_ex = exhaustive_inference(crf, x, w)
        assert_array_equal(y_hat, y_ex)
Example #20
0
def test_blocks_multinomial_crf():
    X, Y = toy.generate_blocks_multinomial(n_samples=1, size_x=9, seed=0)
    x, y = X[0], Y[0]
    w = np.array([1., 0., 0.,  # unaryA
                  0., 1., 0.,
                  0., 0., 1.,
                 .4,           # pairwise
                 -.3, .3,
                 -.5, -.1, .3])
    for inference_method in get_installed():
        crf = GridCRF(n_states=3, inference_method=inference_method)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
Example #21
0
def test_blocks_multinomial_crf():
    X, Y = toy.generate_blocks_multinomial(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([1., 0., 0.,  # unaryA
                  0., 1., 0.,
                  0., 0., 1.,
                 .4,           # pairwise
                 -.3, .3,
                 -.5, -.1, .3])
    for inference_method in ['dai', 'qpbo', 'lp', 'ad3']:
        crf = GridCRF(n_states=3, inference_method=inference_method)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
Example #22
0
def test_binary_crf_exhaustive():
    # tests qpbo inference against brute force
    # on random data / weights
    np.random.seed(0)
    for i in range(10):
        x = np.random.uniform(-1, 1, size=(3, 2))
        x = np.dstack([-x, np.zeros_like(x)]).copy()
        crf = GridCRF(n_features=2, n_states=2)
        w = np.random.uniform(-1, 1, size=7)
        # check map inference
        y_hat = crf.inference(x, w)
        y_ex = exhaustive_inference(crf, x, w)
        assert_array_equal(y_hat, y_ex)
Example #23
0
def test_energy_lp():
    # make sure that energy as computed by ssvm is the same as by lp
    np.random.seed(0)
    found_fractional = False
    for inference_method in get_installed(["lp", "ad3"]):
        crf = GridCRF(n_states=3, n_features=4,
                      inference_method=inference_method)
        while not found_fractional:
            x = np.random.normal(size=(2, 2, 4))
            w = np.random.uniform(size=crf.size_psi)
            inf_res, energy_lp = crf.inference(x, w, relaxed=True,
                                               return_energy=True)
            assert_almost_equal(energy_lp,
                                -np.dot(w, crf.psi(x, inf_res)))
            found_fractional = np.any(np.max(inf_res[0], axis=-1) != 1)
Example #24
0
def test_blocks_multinomial_crf():
    X, Y = generate_blocks_multinomial(n_samples=1, size_x=9, seed=0)
    x, y = X[0], Y[0]
    w = np.array([1., 0., 0.,  # unaryA
                  0., 1., 0.,
                  0., 0., 1.,
                 .4,           # pairwise
                 -.3, .3,
                 -.5, -.1, .3])
    for inference_method in get_installed():
        #NOTE: ad3+ fails because it requires a different data structure
        if inference_method == 'ad3+': continue
        crf = GridCRF(inference_method=inference_method)
        crf.initialize(X, Y)
        y_hat = crf.inference(x, w)
        assert_array_equal(y, y_hat)
Example #25
0
def test_max_product_binary_blocks():
    X, Y = generate_blocks(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([
        1,
        0,  # unary
        0,
        1,
        0,  # pairwise
        -4,
        0
    ])
    crf = GridCRF(inference_method='max-product')
    crf.initialize(X, Y)
    y_hat = crf.inference(x, w)
    assert_array_equal(y, y_hat)
Example #26
0
def test_binary_crf_exhaustive():
    # tests graph cut inference against brute force
    # on random data / weights
    np.random.seed(0)
    for i in xrange(50):
        x = np.random.uniform(-1, 1, size=(3, 3))
        x = np.dstack([-x, np.zeros_like(x)]).copy()
        crf = GridCRF()
        w = np.random.uniform(-1, 1, size=7)
        # check map inference
        y_hat = crf.inference(x, w)
        y_ex = exhaustive_inference(crf, x, w)
        #print(y_hat)
        #print(y_ex)
        #print("++++++++++++++++++++++")
        assert_array_equal(y_hat, y_ex)
Example #27
0
def test_binary_ssvm_repellent_potentials():
    # test non-submodular problem with and without submodularity constraint
    # dataset is checkerboard
    X, Y = generate_checker()
    crf = GridCRF(inference_method=inference_method)
    clf = NSlackSSVM(model=crf, max_iter=10, C=100,
                     check_constraints=True)
    clf.fit(X, Y)
    Y_pred = clf.predict(X)
    # standard crf can predict perfectly
    assert_array_equal(Y, Y_pred)

    submodular_clf = NSlackSSVM(model=crf, max_iter=10, C=100,
                                check_constraints=True,
                                negativity_constraint=[4, 5, 6])
    submodular_clf.fit(X, Y)
    Y_pred = submodular_clf.predict(X)
    # submodular crf can not do better than unaries
    for i, x in enumerate(X):
        y_pred_unaries = crf.inference(x, np.array([1, 0, 0, 1, 0, 0, 0]))
        assert_array_equal(y_pred_unaries, Y_pred[i])
Example #28
0
def test_one_slack_repellent_potentials():
    # test non-submodular learning with and without positivity constraint
    # dataset is checkerboard
    X, Y = toy.generate_checker()
    for inference_method in ["lp", "qpbo", "ad3"]:
        crf = GridCRF(inference_method=inference_method)
        clf = OneSlackSSVM(model=crf, max_iter=10, C=100, verbose=0,
                           check_constraints=True, n_jobs=-1)
        clf.fit(X, Y)
        Y_pred = clf.predict(X)
        # standard crf can predict perfectly
        assert_array_equal(Y, Y_pred)

        submodular_clf = OneSlackSSVM(model=crf, max_iter=10, C=100,
                                      verbose=0, check_constraints=True,
                                      positive_constraint=[4, 5, 6], n_jobs=-1)
        submodular_clf.fit(X, Y)
        Y_pred = submodular_clf.predict(X)
        # submodular crf can not do better than unaries
        for i, x in enumerate(X):
            y_pred_unaries = crf.inference(x, np.array([1, 0, 0, 1, 0, 0, 0]))
            assert_array_equal(y_pred_unaries, Y_pred[i])
Example #29
0
def test_max_product_multinomial_crf():
    X, Y = generate_blocks_multinomial(n_samples=1)
    x, y = X[0], Y[0]
    w = np.array([
        1.,
        0.,
        0.,  # unary
        0.,
        1.,
        0.,
        0.,
        0.,
        1.,
        .4,  # pairwise
        -.3,
        .3,
        -.5,
        -.1,
        .3
    ])
    crf = GridCRF(inference_method='max-product')
    crf.initialize(X, Y)
    y_hat = crf.inference(x, w)
    assert_array_equal(y, y_hat)