def test_continuous_y(): for inference_method in get_installed(["lp", "ad3"]): X, Y = generate_blocks(n_samples=1) x, y = X[0], Y[0] w = np.array([1, 0, 0, 1, 0, -4, 0]) # unary # pairwise crf = GridCRF(inference_method=inference_method) crf.initialize(X, Y) joint_feature = crf.joint_feature(x, y) y_cont = np.zeros_like(x) gx, gy = np.indices(x.shape[:-1]) y_cont[gx, gy, y] = 1 # need to generate edge marginals vert = np.dot(y_cont[1:, :, :].reshape(-1, 2).T, y_cont[:-1, :, :].reshape(-1, 2)) # horizontal edges horz = np.dot(y_cont[:, 1:, :].reshape(-1, 2).T, y_cont[:, :-1, :].reshape(-1, 2)) pw = vert + horz joint_feature_cont = crf.joint_feature(x, (y_cont, pw)) assert_array_almost_equal(joint_feature, joint_feature_cont) const = find_constraint(crf, x, y, w, relaxed=False) const_cont = find_constraint(crf, x, y, w, relaxed=True) # djoint_feature and loss are equal: assert_array_almost_equal(const[1], const_cont[1], 4) assert_almost_equal(const[2], const_cont[2], 4) # returned y_hat is one-hot version of other if isinstance(const_cont[0], tuple): assert_array_equal(const[0], np.argmax(const_cont[0][0], axis=-1)) # test loss: assert_almost_equal(crf.loss(y, const[0]), crf.continuous_loss(y, const_cont[0][0]), 4)
def test_loss_augmentation(): X, Y = generate_blocks(n_samples=1) x, y = X[0], Y[0] w = np.array([1, 0, 0, 1, 0, -4, 0]) # unary # pairwise crf = GridCRF() crf.initialize(X, Y) y_hat, energy = crf.loss_augmented_inference(x, y, w, return_energy=True) assert_almost_equal(energy + crf.loss(y, y_hat), -np.dot(w, crf.joint_feature(x, y_hat)))
def test_loss_augmentation(): X, Y = toy.generate_blocks(n_samples=1) x, y = X[0], Y[0] w = np.array([1, 0, # unary 0, 1, 0, # pairwise -4, 0]) crf = GridCRF(inference_method='lp') y_hat, energy = crf.loss_augmented_inference(x, y, w, return_energy=True) assert_almost_equal(energy + crf.loss(y, y_hat), -np.dot(w, crf.psi(x, y_hat)))
def test_loss_augmentation(): X, Y = generate_blocks(n_samples=1) x, y = X[0], Y[0] w = np.array([1, 0, # unary 0, 1, 0, # pairwise -4, 0]) crf = GridCRF() crf.initialize(X, Y) y_hat, energy = crf.loss_augmented_inference(x, y, w, return_energy=True) assert_almost_equal(energy + crf.loss(y, y_hat), -np.dot(w, crf.psi(x, y_hat)))
def test_continuous_y(): for inference_method in get_installed(["lp", "ad3"]): X, Y = generate_blocks(n_samples=1) x, y = X[0], Y[0] w = np.array([ 1, 0, # unary 0, 1, 0, # pairwise -4, 0 ]) crf = GridCRF(inference_method=inference_method) crf.initialize(X, Y) joint_feature = crf.joint_feature(x, y) y_cont = np.zeros_like(x) gx, gy = np.indices(x.shape[:-1]) y_cont[gx, gy, y] = 1 # need to generate edge marginals vert = np.dot(y_cont[1:, :, :].reshape(-1, 2).T, y_cont[:-1, :, :].reshape(-1, 2)) # horizontal edges horz = np.dot(y_cont[:, 1:, :].reshape(-1, 2).T, y_cont[:, :-1, :].reshape(-1, 2)) pw = vert + horz joint_feature_cont = crf.joint_feature(x, (y_cont, pw)) assert_array_almost_equal(joint_feature, joint_feature_cont) const = find_constraint(crf, x, y, w, relaxed=False) const_cont = find_constraint(crf, x, y, w, relaxed=True) # djoint_feature and loss are equal: assert_array_almost_equal(const[1], const_cont[1], 4) assert_almost_equal(const[2], const_cont[2], 4) # returned y_hat is one-hot version of other if isinstance(const_cont[0], tuple): assert_array_equal(const[0], np.argmax(const_cont[0][0], axis=-1)) # test loss: assert_almost_equal(crf.loss(y, const[0]), crf.continuous_loss(y, const_cont[0][0]), 4)
def test_continuous_y(): for inference_method in ["lp", "ad3"]: X, Y = toy.generate_blocks(n_samples=1) x, y = X[0], Y[0] w = np.array([1, 0, # unary 0, 1, 0, # pairwise -4, 0]) crf = GridCRF(inference_method=inference_method) psi = crf.psi(x, y) y_cont = np.zeros_like(x) gx, gy = np.indices(x.shape[:-1]) y_cont[gx, gy, y] = 1 # need to generate edge marginals vert = np.dot(y_cont[1:, :, :].reshape(-1, 2).T, y_cont[:-1, :, :].reshape(-1, 2)) # horizontal edges horz = np.dot(y_cont[:, 1:, :].reshape(-1, 2).T, y_cont[:, :-1, :].reshape(-1, 2)) pw = vert + horz psi_cont = crf.psi(x, (y_cont, pw)) assert_array_almost_equal(psi, psi_cont) const = find_constraint(crf, x, y, w, relaxed=False) const_cont = find_constraint(crf, x, y, w, relaxed=True) # dpsi and loss are equal: assert_array_almost_equal(const[1], const_cont[1]) assert_almost_equal(const[2], const_cont[2]) # returned y_hat is one-hot version of other assert_array_equal(const[0], np.argmax(const_cont[0][0], axis=-1)) # test loss: assert_equal(crf.loss(y, const[0]), crf.continuous_loss(y, const_cont[0][0]))