Example #1
0
    def setUp(self):
        super().setUp()
        np.random.seed(50)
        pauli_dict = {
            'paulis': [{"coeff": {"imag": 0.0, "real": -1.052373245772859}, "label": "II"},
                       {"coeff": {"imag": 0.0, "real": 0.39793742484318045}, "label": "IZ"},
                       {"coeff": {"imag": 0.0, "real": -0.39793742484318045}, "label": "ZI"},
                       {"coeff": {"imag": 0.0, "real": -0.01128010425623538}, "label": "ZZ"},
                       {"coeff": {"imag": 0.0, "real": 0.18093119978423156}, "label": "XX"}
                       ]
        }
        qubit_op = Operator.load_from_dict(pauli_dict)
        self.algo_input = EnergyInput(qubit_op)

        backends = ['statevector_simulator', 'qasm_simulator']
        res = {}
        for backend in backends:
            params_no_caching = {
                'algorithm': {'name': 'VQE', 'operator_mode': 'matrix' if backend == 'statevector_simulator' else 'paulis'},
                'problem': {'name': 'energy',
                            'random_seed': 50,
                            'circuit_caching': False,
                            'skip_qobj_deepcopy': False,
                            'skip_qobj_validation': False,
                            'circuit_cache_file': None,
                            },
                'backend': {'provider': 'qiskit.BasicAer', 'name': backend, 'shots': 1000},
            }
            qiskit_aqua = QiskitAqua(params_no_caching, self.algo_input)
            res[backend] = qiskit_aqua.run()
        self.reference_vqe_result = res
Example #2
0
    def test_vqe_caching_via_run_algorithm(self, backend, caching, skip_qobj_deepcopy):
        skip_validation = True
        params_caching = {
            'algorithm': {'name': 'VQE', 'operator_mode': 'matrix' if backend == 'statevector_simulator' else 'paulis'},
            'problem': {'name': 'energy',
                        'random_seed': 50,
                        'circuit_caching': caching,
                        'skip_qobj_deepcopy': skip_qobj_deepcopy,
                        'skip_qobj_validation': skip_validation,
                        'circuit_cache_file': None,
                        },
            'backend': {'provider': 'qiskit.BasicAer', 'name': backend, 'shots': 1000},
        }
        qiskit_aqua = QiskitAqua(params_caching, self.algo_input)
        result_caching = qiskit_aqua.run()

        self.assertAlmostEqual(result_caching['energy'], self.reference_vqe_result[backend]['energy'])

        np.testing.assert_array_almost_equal(self.reference_vqe_result[backend]['eigvals'],
                                             result_caching['eigvals'], 5)
        np.testing.assert_array_almost_equal(self.reference_vqe_result[backend]['opt_params'],
                                             result_caching['opt_params'], 5)
        if qiskit_aqua.quantum_instance.has_circuit_caching:
            self.assertEqual(qiskit_aqua.quantum_instance._circuit_cache.misses, 0)
        self.assertIn('eval_count', result_caching)
        self.assertIn('eval_time', result_caching)
Example #3
0
 def _build_refrence_result(self, backends):
     res = {}
     os.environ.pop('QISKIT_AQUA_CIRCUIT_CACHE', None)
     for backend in backends:
         params_no_caching = {
             'algorithm': {
                 'name': 'VQE'
             },
             'problem': {
                 'name': 'energy',
                 'random_seed': 50,
                 'circuit_caching': False,
                 'skip_qobj_deepcopy': False,
                 'skip_qobj_validation': False,
                 'circuit_cache_file': None,
             },
             'backend': {
                 'provider': 'qiskit.BasicAer',
                 'name': backend
             },
         }
         if backend != 'statevector_simulator':
             params_no_caching['backend']['shots'] = 1000
             params_no_caching['optimizer'] = {
                 'name': 'SPSA',
                 'max_trials': 15
             }
         qiskit_aqua = QiskitAqua(params_no_caching, self.algo_input)
         res[backend] = qiskit_aqua.run()
     os.environ['QISKIT_AQUA_CIRCUIT_CACHE'] = '1'
     self.reference_vqe_result = res
Example #4
0
 def _build_refrence_result(self, backends):
     res = {}
     for backend in backends:
         params_no_caching = {
             'algorithm': {
                 'name':
                 'VQE',
                 'operator_mode':
                 'matrix'
                 if backend == 'statevector_simulator' else 'paulis'
             },
             'problem': {
                 'name': 'energy',
                 'random_seed': 50,
                 'circuit_caching': False,
                 'skip_qobj_deepcopy': False,
                 'skip_qobj_validation': False,
                 'circuit_cache_file': None,
             },
             'backend': {
                 'provider': 'qiskit.BasicAer',
                 'name': backend
             },
         }
         if backend != 'statevector_simulator':
             params_no_caching['backend']['shots'] = 1000
             params_no_caching['optimizer'] = {
                 'name': 'SPSA',
                 'max_trials': 15
             }
         qiskit_aqua = QiskitAqua(params_no_caching, self.algo_input)
         res[backend] = qiskit_aqua.run()
     self.reference_vqe_result = res
Example #5
0
    def test_vqe_caching_via_run_algorithm(self, backend, caching, skip_qobj_deepcopy):
        self._build_refrence_result(backends=[backend])
        skip_validation = True
        params_caching = {
            'algorithm': {'name': 'VQE'},
            'problem': {'name': 'energy',
                        'random_seed': 50,
                        'circuit_optimization_level': self.optimization_level,
                        'circuit_caching': caching,
                        'skip_qobj_deepcopy': skip_qobj_deepcopy,
                        'skip_qobj_validation': skip_validation,
                        'circuit_cache_file': None,
                        },
            'backend': {'provider': 'qiskit.BasicAer', 'name': backend},
        }
        if backend != 'statevector_simulator':
            params_caching['backend']['shots'] = 1000
            params_caching['optimizer'] = {'name': 'SPSA', 'max_trials': 15}
        qiskit_aqua = QiskitAqua(params_caching, self.algo_input)
        result_caching = qiskit_aqua.run()

        self.assertAlmostEqual(result_caching['energy'], self.reference_vqe_result[backend]['energy'])

        np.testing.assert_array_almost_equal(self.reference_vqe_result[backend]['eigvals'],
                                             result_caching['eigvals'], 5)
        np.testing.assert_array_almost_equal(self.reference_vqe_result[backend]['opt_params'],
                                             result_caching['opt_params'], 5)
        if qiskit_aqua.quantum_instance.has_circuit_caching:
            self.assertEqual(qiskit_aqua.quantum_instance._circuit_cache.misses, 0)
        self.assertIn('eval_count', result_caching)
        self.assertIn('eval_time', result_caching)
Example #6
0
    def __init__(self):
        self.move = 0
        self.data_file = 'data.csv'
        self.data_path = 'PlayerLogic'

        self.feature_dim = 9  # dimension of each data point
        sample_Total, training_input, test_input, class_labels = VQCQPlayer.userDefinedData(
            self.data_path,
            self.data_file, ['0', '1', '2', '3', '4', '5', '6', '7', '8'],
            training_size=6000,
            test_size=500,
            n=self.feature_dim,
            PLOT_DATA=False)

        temp = [test_input[k] for k in test_input]
        total_array = np.concatenate(temp)

        aqua_dict = {
            'problem': {
                'name': 'classification'
            },
            'algorithm': {
                'name': 'SVM'
            },
            'multiclass_extension': {
                'name': 'AllPairs'
            }
        }

        algo_input = ClassificationInput(training_input, test_input,
                                         total_array)

        from qiskit.aqua import QiskitAqua
        aqua_obj = QiskitAqua(aqua_dict, algo_input)
        self.algo_obj = aqua_obj.quantum_algorithm

        logger.info("Training the SVM....")
        aqua_obj.run()
        logger.info("Trained!")
Example #7
0
def run_algorithm_from_json(params, output_file):
    """
    Runs the Aqua Chemistry experiment from Qiskit Aqua json dictionary

    Args:
        params (dictionary): Qiskit Aqua json dictionary
        output_file (filename): Output file name to save results
    """
    qiskit_aqua = QiskitAqua(params)
    ret = qiskit_aqua.run()
    if not isinstance(ret, dict):
        raise QiskitChemistryError('Algorithm run result should be a dictionary {}'.format(ret))

    print('Output:')
    pprint(ret, indent=4)
    if output_file is not None:
        with open(output_file, 'w') as out:
            pprint(ret, stream=out, indent=4)
Example #8
0
    'algorithm': {
        'name': 'SVM'
    },
    'multiclass_extension': {
        'name': 'AllPairs'
    }
}

algo_input = SVMInput(training_input, test_input, total_array)

from qiskit.aqua import QiskitAqua

aqua_obj = QiskitAqua(aqua_dict, algo_input)
algo_obj = aqua_obj.quantum_algorithm

result = aqua_obj.run()  #run_algorithm(aqua_dict, algo_input)
for k, v in result.items():
    print("'{}' : {}".format(k, v))

# 6
to_predict = singleDataItem('', 'data.csv', [1, 2, 0, 0, 0, 0, 0, 1, 0], n=3)
print(algo_obj.predict(to_predict))

# 2
to_predict = singleDataItem('', 'data.csv', [1, 0, 1, 0, 0, 0, 0, 2, 0], n=3)
print(algo_obj.predict(to_predict))

# 1
to_predict = singleDataItem('', 'data.csv', [0, 0, 0, 0, 0, 1, 0, 0, 0], n=3)
print(algo_obj.predict(to_predict))