def main(): vcf_path, bed_path, expression_matrix_path, covariate_numerical, covariate_categorical, covariate_file_path, output_dir = argument_parser() # extract basic information from input files vcf_sample, vcf_var, expression_sample, expression_gene, cov_sample, cov_num, cov_used_num = file_info(vcf_path, expression_matrix_path, covariate_numerical, covariate_categorical, covariate_file_path) print("VCF file:", vcf_sample, "samples and", vcf_var, "variants") print("Expression matrix:", expression_sample, "samples and", expression_gene, "genes") print("Covariate file:", cov_sample, "samples and", cov_num, "covariates;", cov_used_num, "covariates used") # map samples to genes, write bin expression file for linear regression annotation.main(vcf_path, bed_path, expression_matrix_path, output_dir) # build linear regression model and perform t test, write output summary file print('buiding regression model...') regression.main(output_dir, covariate_numerical, covariate_categorical, covariate_file_path) print('done') return 0
def main(run_nums, data_dir, write_dir): print('Setting up files for runs ' + str(run_nums)) for run_num in run_nums.split(' '): print('Run: ' + str(run_num)) # Set up filtered data files print('Creating filtered files...') filters.main(True, True, run_num, data_dir, write_dir) # Run RF regression on each run to obtain ground truth files print('Creating ground truth files...') regression.main(run_num, None, 'RF', data_dir, write_dir, 2) print('\n') print('Done')
def post(self): next_values = {} users = [] files = self.request.files for file_name in files: updateData(file_name, files[file_name][0]['body'].decode("utf-8")) #execute regression predict_value = regression.main('data/'+file_name)/MULTIPLICAND next_values[file_name] = predict_value users.append(file_name.split('_')[0]) calculateNextMove(next_values, users)
def post(self): next_values = {} users = [] files = self.request.files for file_name in files: updateData(file_name, files[file_name][0]['body'].decode("utf-8")) #execute regression predict_value = regression.main('data/' + file_name) / MULTIPLICAND next_values[file_name] = predict_value users.append(file_name.split('_')[0]) calculateNextMove(next_values, users)
def predict_regression(): collection = request.get_json()['collection'] features = request.get_json()['features'] target = request.get_json()['target'] inputType = request.get_json()['inputType'] ml_result = regression.main(collection, features, target, inputType) return jsonify({ "Linear_Regression": ml_result['Linear_Regression'].tolist(), "RandomForest": ml_result['RandomForest'].tolist(), "GradientBoosting": ml_result['GradientBoosting'].tolist(), "files": ml_result.index.tolist() })
def main(): # Title st.title("AlphaAI") # Sidebar activities = [ "Home", "Dataset Explorer", "ML Classifiers", "ML Regression", "News Classification", "Text Summarizer", "Real World Data Distribution", "Vision API" ] choice = st.sidebar.selectbox("Choose Activity", activities) if choice == "Home": st.header( 'Empowering companies to jumpstart AI and generate real-world value' ) st.subheader( 'Use exponential technologies to your advantage and lead your industry with confidence through innovation.' ) image = Image.open('images/img0.jpg') st.image(image, use_column_width=True, caption='Data Mining') if choice == "Dataset Explorer": st.subheader("Dataset Explorer") dataset_analysis.main() if choice == "Real World Data Distribution": geo_climate.main() if choice == "ML Regression": regression.main() if choice == "ML Classifiers": classification.main() if choice == "Vision API": vision_api.main() if choice == "Text Summarizer": text_summ.main() if choice == "News Classification": newsclass.main()
# -*- coding: utf-8 -*- # # Copyright (c) 2017, the cclib development team # # This file is part of cclib (http://cclib.github.io) and is distributed under # the terms of the BSD 3-Clause License. """This script runs the regression framework in the cclib-data repostiory.""" from __future__ import print_function import os import sys if __name__ == "__main__": # Assume the cclib-data repository is cloned in this directory. regression_dir = os.path.join("..", "data", "regression") sys.path.append(regression_dir) import regression opt_traceback = "--traceback" in sys.argv opt_status = "--status" in sys.argv # This can be used to limit the programs we want to run regressions for. which = [arg for arg in sys.argv[1:] if not arg in ["--status", "--traceback"]] regression.main(which, opt_traceback, opt_status, regression_dir)
# -*- coding: utf-8 -*- """ Created on Mon Feb 25 14:13:45 2019 @author: drape """ print('this should print') import bank_boost as bb import bagging as bag import random_forest as rf import regression as reg print('does this print?') bb.main() bag.main() rf.main() reg.main()
def main(companyName, companySymbol, pred_date, weights, companyDict={}): #initializing the neuron class neural_network = NeuralNetwork() #print("Beginning Randomly Generated Weights: ") #print(neural_network.synaptic_weights) if len(weights) == 0: #training data consisting of 4 examples--3 input values and 1 output training_examples = [] training_examples_outputs = [] companyDict = { } # Avoid Slowdown from Yahoo and Nasdaq during training. Cache the results for i in range(1, 13): example = [] # set up dates latestDate = datetime.datetime(2018, i, 2) if i == 12: endDate = datetime.datetime(2019, 1, 1) else: endDate = datetime.datetime(2018, i + 1, 1) sentiment_analysis_tuple = SA.getSentiment(companySymbol, companyName, latestDate, endDate, companyDict) example.append(sentiment_analysis_tuple[0]) # example.append(float(sentiment_analysis_tuple[1]/100)) companyDict = sentiment_analysis_tuple[2] while True: try: regression_tuple = regression.main(companySymbol, endDate) if regression_tuple[1] == None: #print('No data for {}. Trying the next market day'.format(endDate.isoformat())) endDate = endDate.replace(year=endDate.year, month=endDate.month, day=endDate.day + 1) else: break except: #print('Markets were closed on {}. Trying the next day this month'.format(endDate.isoformat())) endDate = endDate.replace(year=endDate.year, month=endDate.month, day=endDate.day + 1) #print(regression_tuple) example.append(regression_tuple[0]) training_examples_outputs.append(regression_tuple[1]) #truth value training_examples.append(example) training_inputs = np.array(training_examples) #print(training_inputs) #training_inputs = np.array([[0,0,1], # [1,1,1], # [1,0,1], # [0,1,1]]) #print(training_examples_outputs) training_outputs = np.array([training_examples_outputs]).T #training_outputs = np.array([[0,1,1,0]]).T #training taking place neural_network.train(training_inputs, training_outputs, 15000) else: neural_network.synaptic_weights = weights #print("Ending Weights After Training: ") #print(neural_network.synaptic_weights) pred_back = pred_date.replace(year=pred_date.year, month=pred_date.month, day=pred_date.day - 2) input_features = [] sentiment_analysis_tuple = SA.getSentiment(companySymbol, companyName, pred_back, pred_date, companyDict) #print(sentiment_analysis_tuple) input_features.append(sentiment_analysis_tuple[0]) #input_features.append(float(sentiment_analysis_tuple[1]/100)) #print(sentiment_analysis_tuple[1]) regression_tuple = regression.main(companySymbol, pred_date) input_features.append(regression_tuple[0]) actual = regression_tuple[1] #print(pred_date.isoformat()) #print("\t Sentiment", sentiment_analysis_tuple[0]) #if sentiment_analysis_tuple[0] > SENTIMENT_BOUNDARY: # return (1, neural_network.synaptic_weights, companyDict) #else: # return (0, neural_network.synaptic_weights, companyDict) print("\n Considering New Situation: " + str(input_features)) prediction = neural_network.think(np.array(input_features)) print("Trial for day ", pred_date.isoformat()) print("\t Prediction: ", prediction) print("\t Actual Change: ", actual) if prediction < actual + .1 and prediction > actual - .1: return (1, neural_network.synaptic_weights, companyDict) else: return (0, neural_network.synaptic_weights, companyDict)
''' Created on 20 mrt. 2013 @author: Erik Vandeputte ''' import kmeans_assign import regression import time RESULTSFILE = "results.txt" clusters = [100, 200, 250, 300, 400, 450, 500, 700] start_time = time.time() f = open(RESULTSFILE, 'a') for num_clusters in clusters: print 'perform kmeans for %d clusters' % num_clusters #kmeans_full.main(num_clusters) #assign (hard and soft) kmeans_assign.main(True, num_clusters) kmeans_assign.main(False, num_clusters) #perform regression(hard and soft) mse_hard, alpha_hard = regression.main(True, num_clusters) mse_soft, alpha_soft = regression.main(False, num_clusters) f.write("%s\t%s\t%s\t%s\n" % (str(num_clusters), 'hard', str(mse_hard), str(alpha_hard))) f.write("%s\t%s\t%s\t%s\n" % (str(num_clusters), 'soft', str(mse_soft), str(alpha_soft))) f.flush() f.write("running this script took %.2f seconds" % (time.time() - start_time)) f.close()
def main(): import argparse parser = argparse.ArgumentParser(description='Neural Network framework.') parser.add_argument( 'action', choices=['regression', 'classification'], help='Choose mode either \'regression\' or \'classification\'.') parser.add_argument( 'activation', choices=['sigmoid', 'relu', 'tanh'], help='Choose mode either \'sigmoid\' or \'relu\' or \'tanh\'.') parser.add_argument('--train_filename', type=str, help='Name of a file containing training data', required=False) parser.add_argument('--test_filename', type=str, help='Name of a file containing testing data') parser.add_argument( '--create_nn', nargs='*', type=int, help= 'When creating a nn from scratch; number of neurons for each layer', required=False) parser.add_argument('--save_nn', type=str, help='Name of a file to save trained model to.') parser.add_argument('--savefig_filename', type=str, help='Name of a file to save plot to.') parser.add_argument('-e', '--number_of_epochs', type=int, help='Number of epochs (iterations) for the NN to run', required=False, default=10000) parser.add_argument('--read_nn', type=str, help='When reading existing nn from a file; filename') parser.add_argument( '-v', '--visualize_every', type=int, help='How ofter (every n iterations) print neuron\'s weights.', required=False) parser.add_argument('--l_rate', type=float, help='Learning rate', required=False, default=0.001) parser.add_argument('--seed', type=int, help='Random seed int', required=False, default=1) parser.add_argument('--biases', dest='biases', action='store_true') parser.add_argument('--no_biases', dest='biases', action='store_false') parser.set_defaults(biases=True) args = parser.parse_args() # Seed the random number generator random.seed(args.seed) if args.create_nn is None and args.read_nn is None: print('Either \'--create_nn\' or \'--read_nn\' has to be provided.') exit(1) if args.train_filename is None and args.save_nn is not None: print( '\'--save_nn\' cannot be provided when \'--train_filename\' is not provided.' ) exit(1) if args.train_filename is None and args.create_nn is not None: print( '\'--create_nn\' cannot be provided when \'--train_filename\' is not provided.' ) exit(1) if args.activation == 'sigmoid': from util import sigmoid, sigmoid_derivative activation_f, activation_f_derivative = sigmoid, sigmoid_derivative elif args.activation == 'relu': from util import reLu, reLu_derivative activation_f, activation_f_derivative = reLu, reLu_derivative elif args.activation == 'tanh': from util import tanh, tanh_derivative activation_f, activation_f_derivative = tanh, tanh_derivative else: print( 'Sorry, second positional argument has to be either \'sigmoid\' or \'relu\' or \'tanh\'.' ) exit(1) if args.action == 'regression': import regression regression.main(args.train_filename, args.test_filename, args.create_nn, args.save_nn, args.read_nn, args.number_of_epochs, args.visualize_every, args.l_rate, args.savefig_filename, activation_f, activation_f_derivative) elif args.action == 'classification': import classification classification.main(args.train_filename, args.test_filename, args.create_nn, args.save_nn, args.read_nn, args.number_of_epochs, args.visualize_every, args.l_rate, args.biases, activation_f, activation_f_derivative) else: print( 'Sorry, first positional argument has to be either \'regression\' or \'classification\'.' ) exit(1)
''' Created on 20 mrt. 2013 @author: Erik Vandeputte ''' import kmeans_assign import regression import time RESULTSFILE = "results.txt" clusters = [100,200,250,300,400,450,500,700] start_time = time.time() f = open(RESULTSFILE,'a') for num_clusters in clusters: print 'perform kmeans for %d clusters' %num_clusters #kmeans_full.main(num_clusters) #assign (hard and soft) kmeans_assign.main(True,num_clusters) kmeans_assign.main(False,num_clusters) #perform regression(hard and soft) mse_hard,alpha_hard = regression.main(True, num_clusters) mse_soft,alpha_soft = regression.main(False, num_clusters) f.write("%s\t%s\t%s\t%s\n" % (str(num_clusters),'hard',str(mse_hard),str(alpha_hard))) f.write("%s\t%s\t%s\t%s\n" % (str(num_clusters),'soft',str(mse_soft),str(alpha_soft))) f.flush() f.write("running this script took %.2f seconds" % (time.time() - start_time)) f.close()