Example #1
0
def create_report(G, constraint_stats=False):
    r = Report(G.graph['name'])
    f = r.figure("Graph plots")
    
    report_add_coordinates_and_edges(r, 'graph', G, f,
                                     plot_edges=True, plot_vertices=True)
    report_add_coordinates_and_edges(r, 'graph-edges', G, f,
                                     plot_edges=True, plot_vertices=False)
    report_add_coordinates_and_edges(r, 'graph-vertices', G, f,
                                     plot_edges=False, plot_vertices=True)
    
    
    r.text('node_statistics', graph_degree_stats(G))

    if constraint_stats:
        f = r.figure("Constraints statistics")
        print('Creating statistics')
        stats = graph_errors(G, G)
        print(' (done)')
        report_add_distances_errors_plot(r, nid='statistics', stats=stats, f=f)

        r.text('constraints_stats',
                graph_errors_print('constraints', stats))

    return r
Example #2
0
def report_results_single(func, objspec_name, results):
    def get_string_result(res):
        if res is None:
            s = 'ok'
        elif isinstance(res, Skipped):
            s = 'skipped'
        elif isinstance(res, PartiallySkipped):
            parts = res.get_skipped_parts()
            s = 'no ' + ','.join(parts)
        else:
            print('how to interpret %s? ' % describe_value(res))
            s = '?'
        return s

    r = Report()
    if not results:
        r.text('warning', 'no test objects defined')
        return r

    rows = []
    data = []
    for id_object, res in results.items():
        rows.append(id_object)

        data.append([get_string_result(res)])

    r.table('summary', rows=rows, data=data)
    return r
Example #3
0
def table_by_rows(id_report, samples, rows_field, cols_fields, source_descs):
    samples2 = StoreResultsDict(samples)
    
    class Missing(dict):
        def __missing__(self, key):
            logger.warning('Description for %r missing.' % key)
            d = WithDescription(name=key, symbol='\\text{%s}' % key,
                                desc=None)
            self[key] = d
            return d
        
    source_descs = Missing(source_descs)
        
    r = Report(id_report)
    data_views = [DataView.from_string(x, source_descs) for x in cols_fields]
    # data: list of list of list
    rows_field, data, reduced, display = summarize_data(samples2, rows_field, data_views)
    rows = ['$%s$' % source_descs[x].get_symbol() for x in rows_field]
    cols = ['$%s$' % x.get_symbol() for x in data_views]
    r.table('table', data=display, cols=cols, rows=rows)
    r.data('table_data', data=reduced,
           caption="Data without presentation applied.")
    r.data('table_data_source', data=data,
           caption="Source data, before reduction.")
    
    row_desc = "\n".join(['- $%s$: %s' % (x.get_symbol(), x.get_desc()) 
                          for x in map(source_descs.__getitem__, rows_field)])
    col_desc = "\n".join(['- $%s$: %s' % (x.get_symbol(), x.get_desc()) 
                          for x in data_views])
    r.text('row_desc', rst_escape_slash(row_desc), mime=MIME_RST)
    r.text('col_desc', rst_escape_slash(col_desc), mime=MIME_RST)    
    return  r
Example #4
0
def report_results_single(func, objspec_name, results):

    def get_string_result(res):
        if res is None:
            s = 'ok'
        elif isinstance(res, Skipped):
            s = 'skipped'
        elif isinstance(res, PartiallySkipped):
            parts = res.get_skipped_parts()
            s = 'no ' + ','.join(parts)
        else:
            print('how to interpret %s? ' % describe_value(res))
            s = '?'
        return s

    r = Report()
    if not results:
        r.text('warning', 'no test objects defined')
        return r

    rows = []
    data = []
    for id_object, res in list(results.items()):
        rows.append(id_object)

        data.append([get_string_result(res)])

    r.table('summary', rows=rows, data=data)
    return r
Example #5
0
def create_report(G, constraint_stats=False):
    r = Report(G.graph['name'])
    f = r.figure("Graph plots")

    report_add_coordinates_and_edges(r,
                                     'graph',
                                     G,
                                     f,
                                     plot_edges=True,
                                     plot_vertices=True)
    report_add_coordinates_and_edges(r,
                                     'graph-edges',
                                     G,
                                     f,
                                     plot_edges=True,
                                     plot_vertices=False)
    report_add_coordinates_and_edges(r,
                                     'graph-vertices',
                                     G,
                                     f,
                                     plot_edges=False,
                                     plot_vertices=True)

    r.text('node_statistics', graph_degree_stats(G))

    if constraint_stats:
        f = r.figure("Constraints statistics")
        print('Creating statistics')
        stats = graph_errors(G, G)
        print(' (done)')
        report_add_distances_errors_plot(r, nid='statistics', stats=stats, f=f)

        r.text('constraints_stats', graph_errors_print('constraints', stats))

    return r
Example #6
0
def get_optim_state_report(s, opt):
    r = Report()

    from mcdp_opt_tests.test_basic import plot_ndp
    plot_ndp(r, 'current', s.get_current_ndp(), opt.library)
    r.text('order', 'creation order: %s' % s.creation_order)
    r.text('msg', s.get_info())
    return r
Example #7
0
def get_optim_state_report(s, opt):
    r = Report()

    from mcdp_opt_tests.test_basic import plot_ndp
    plot_ndp(r, 'current', s.get_current_ndp(), opt.library)
    r.text('order', 'creation order: %s' % s.creation_order)
    r.text('msg', s.get_info())
    return r
class ReprepPublisher(Publisher):

    default_max_cols = 5

    def __init__(self, rid=None, report=None, cols=default_max_cols):
        # TODO: clear up this interface
        if report is None:
            self.r = Report(rid)
        else:
            self.r = report

        self.cols = cols
        self._f = None

    def fig(self):
        ''' Returns reference to current RepRep figure. '''
        if self._f is None:
            self._f = self.r.figure(cols=self.cols)
        return self._f

    @contract(name='str', value='array', caption='None|str')
    def array(self, name, value, caption=None):  # XXX to change
        self.r.data(name, value, mime=MIME_PYTHON, caption=caption)

    @contract(name='str', value='array', filter='str', caption='None|str')
    def array_as_image(self, name, value,
                       filter='posneg',  # @ReservedAssignment # XXX: config
                       filter_params={},
                       caption=None):  # @ReservedAssignment
        # try image XXX check uint8
        # If this is RGB
        if len(value.shape) == 3 and value.shape[2] == 3:
            # zoom images smaller than 50
            #            if value.shape[0] < 50:
            #                value = zoom(value, 10)
            self.fig().data_rgb(name, value, caption=caption)
        else:
            node = self.r.data(name, value, mime=MIME_PYTHON, caption=caption)
            m = node.display(filter, **filter_params)
            if caption is None:
                caption = name
            self.fig().sub(m, caption=caption)

    @contract(name='str', value='str')
    def text(self, name, value):
        self.r.text(name, value)

    @contextmanager
    @contract(name='str', caption='None|str')
    def plot(self, name, caption=None, **args):
        f = self.fig()
        # TODO: make a child of myself
        with f.plot(name, caption=caption, **args) as pylab:
            yield pylab

    def section(self, section_name, cols=default_max_cols, caption=None):
        child = self.r.node(section_name, caption=caption)
        return ReprepPublisher(report=child, cols=cols)
def create_report_delayed(exp_id, delayed, description):

    delays = numpy.array(sorted(delayed.keys()))

    r = Report(exp_id)
    r.text("description", description)

    f = r.figure(cols=3)

    # max and sum of correlation for each delay
    # corr_max = []
    corr_mean = []

    for delay in delays:
        data = delayed[delay]

        a = data["action_image_correlation"]

        id = "delay%d" % delay

        # rr = r.node('delay%d' % delay)
        r.data(id, a).data_rgb("retina", add_reflines(posneg(values2retina(a))))

        corr_mean.append(numpy.abs(a).mean())

        caption = "delay: %d (max: %.3f, sum: %f)" % (delay, numpy.abs(a).max(), numpy.abs(a).sum())
        f.sub(id, caption=caption)

    timestamp2ms = lambda x: x * (1.0 / 60) * 1000

    peak = numpy.argmax(corr_mean)
    peak_ms = timestamp2ms(delays[peak])
    with r.data_pylab("mean") as pylab:
        T = timestamp2ms(delays)
        pylab.plot(T, corr_mean, "o-")
        pylab.ylabel("mean correlation field")
        pylab.xlabel("delay (ms) ")

        a = pylab.axis()

        pylab.plot([0, 0], [a[2], a[3]], "k-")

        y = a[2] + (a[3] - a[2]) * 0.1
        pylab.text(+5, y, "causal", horizontalalignment="left")
        pylab.text(-5, y, "non causal", horizontalalignment="right")

        pylab.plot([peak_ms, peak_ms], [a[2], max(corr_mean)], "b--")

        y = a[2] + (a[3] - a[2]) * 0.2
        pylab.text(peak_ms + 10, y, "%d ms" % peak_ms, horizontalalignment="left")

    f = r.figure("stats")
    f.sub("mean")

    a = delayed[int(delays[peak])]["action_image_correlation"]
    r.data_rgb("best_delay", add_reflines(posneg(values2retina(a))))

    return r
Example #10
0
def stat_report(stats_def, stats):
    #    pdb.set_trace()
    report = Report('OnlinePlanning_statistics')
    report.text('summary', 'Result report for online planning')
    for job in stats_def:
        function = eval(job['type'])
        job['args']['plot_id'] = job['id']
        function(report, stats, **job['args'])
    return report
Example #11
0
def report_learner(id_report, learner):
    r = Report(id_report)
    if learner is None:
        msg = 'Not display %r because not initialized' % id_report
        logger.info(msg)
        r.text('notice', 'Not initialized')
    else:
        learner.display(r)
    return r
Example #12
0
def report_example(param2, samples):
    print('report_example(%s, %s)' % (param2, samples))
    if param2 == -1:
        print('generating exception')
        raise Exception('fake exception')
    r = Report()
    r.text('samples', str(samples))
    print('creating report')
    return r
Example #13
0
def report_example(param2, samples):
    print('report_example(%s, %s)' % (param2, samples))
    if param2 == -1:
        print('generating exception')
        raise Exception('fake exception')
    r = Report()
    r.text('samples', str(samples))
    print('creating report')
    return r
Example #14
0
def report_learner(id_report, learner):
    r = Report(id_report)
    if learner is None:
        msg = 'Not display %r because not initialized' % id_report
        logger.info(msg)
        r.text('notice', 'Not initialized')
    else:
        learner.display(r)
    return r
Example #15
0
def stat_report(stats_def, stats):
#    pdb.set_trace()
    report = Report('OnlinePlanning_statistics')
    report.text('summary', 'Result report for online planning')
    for job in stats_def:
        function = eval(job['type'])
        job['args']['plot_id'] = job['id']
        function(report, stats, **job['args'])
    return report
Example #16
0
    def create_report(self):
        report = Report('OnlinePlanning')
        report.text('summary', 'Result report for online planning')

        # Plot images
        for job in self.plots['line_graph_mean']:
            graph_errorbar(report, self.all_stats, job['x_axis'],
                           job['function'], job['categorize'])

        filename = '/home/adam/public_html/testrep.html'
        report.to_html(filename)
def get_agent_report_from_state(agent, state, progress):
    rid = "%s-%s-%s" % (state.id_agent, state.id_robot, progress)

    report = Report(rid)

    stats = "Num episodes: %s\nNum observations: %s" % (len(state.id_episodes), state.num_observations)
    report.text("learning_statistics", stats)

    agent.publish(report)

    return report
Example #18
0
 def create_report(self):
     report = Report('OnlinePlanning')
     report.text('summary', 'Result report for online planning')
     
         
     # Plot images
     for job in self.plots['line_graph_mean']:
         graph_errorbar(report, self.all_stats, job['x_axis'], job['function'], job['categorize'])
         
     filename = '/home/adam/public_html/testrep.html'
     report.to_html(filename)
Example #19
0
def create_report_execution(exc_id, tcid, tc, algo_class, algo_params,
                            results):
    r = Report(exc_id)

    f = r.figure('misc', cols=3)

    for w in ['gstats', 'lgstats']:
        if w in results:
            r.text(w, graph_errors_print(w, results[w]))

    G = tc.G
    landmarks = results['landmarks']

    G_all = results.get('G_all', None)
    G_landmarks = results.get('G_landmarks', None)
    lgstats = results.get('lgstats', None)

    if G_landmarks is not None:
        print('plotting landmark positions %s' % G_landmarks.number_of_nodes())
        report_add_coordinates_and_edges(r,
                                         'G_landmarks',
                                         G=G_landmarks,
                                         f=f,
                                         caption='landmarks positions')

        if lgstats is not None:
            report_add_distances_errors_plot(r,
                                             nid='lgstats',
                                             stats=lgstats,
                                             f=f)
    else:
        print("could not find G_landmarks")

    if G_all is not None:
        for u, v in G.edges():
            G_all.add_edge(u, v, **G[u][v])
        print('plotting full solution %s' % G_all.number_of_nodes())
        report_add_coordinates_and_edges(
            r,
            'G_all',
            G=G_all,
            landmarks=landmarks,
            #                                         plot_edges=True,
            f=f,
            caption='all nodes positions')
        report_add_distances_errors_plot(r,
                                         nid='gstats',
                                         stats=results['gstats'],
                                         f=f)
    else:
        print("could not find G_all")

    r.text('phases_as_text', results['phases_as_text'])
    return r
Example #20
0
def display_current_results(learner, name, dirname, iteration):
    dds = learner.summarize(prefix=name)
    r = Report('%s-it%s' % (name, iteration))
    r.text('summary', 'Iteration: %s' % iteration)
    base = '%s-current.html' % (name)
    filename = os.path.join(dirname, 'iterations', base)
    # TODO: add file
    f = '/opt/EPD/7.3/lib/python2.7/site-packages/PIL/Images/lena.jpg'
    lena = imread(f)
    image = UncertainImage(lena)
    dds.display(r, image)
    logger.info('Writing to %r.' % filename) 
    r.to_html(filename)
Example #21
0
def display_current_results(learner, name, dirname, iteration):
    dds = learner.summarize(prefix=name)
    r = Report('%s-it%s' % (name, iteration))
    r.text('summary', 'Iteration: %s' % iteration)
    base = '%s-current.html' % (name)
    filename = os.path.join(dirname, 'iterations', base)
    # TODO: add file
    f = '/opt/EPD/7.3/lib/python2.7/site-packages/PIL/Images/lena.jpg'
    lena = imread(f)
    image = UncertainImage(lena)
    dds.display(r, image)
    logger.info('Writing to %r.' % filename)
    r.to_html(filename)
def create_report(outdir, combination_id, saccades):
    r = Report(combination_id)
    
    stats = 'Combination %r has %d saccades' % (combination_id, len(saccades))
    r.text('stats', stats)
    
    desc = ""
    #r.add_child(create_report_subset(combination_id,desc, saccades))
    #r.add_child(create_report_randomness(combination_id, desc, saccades))
    r.add_child(create_report_axis_angle(combination_id, desc, saccades))

    
    rd = os.path.join(outdir, 'images')
    out = os.path.join(outdir, 'combinations', '%s.html' % combination_id)
    print('Writing to %r' % out)
    r.to_html(out, resources_dir=rd)
Example #23
0
    def __init__(self):
        report = Report('id', caption='env1d')
        self.N = 1000
        self.res = 10
        
        x = np.linspace(0, 10, self.N * self.res)
        self.E = scipy.convolve(np.random.ranf(len(x)),
                                np.ones(self.res * 20) / self.res * 20,
                                mode='same')
        plot_env(report, x, self.E)
        
        self.commands = [-2.5, 2.0]
        self.n_sampels = [0, 0]
        self.sensels = [30, 31]
        self.state = self.N / 2
        
        self.plot_y = False
        self.plot_e = False
        
        self.size = 60
        self.area = 9
        self.s = range(self.size)
        
        self.clean()
        lsize = 20
        sensor_noise = 0
        actuator_noise = 0
        self.run_learning(lsize, actuator_noise=actuator_noise, sensor_noise=sensor_noise)
        report.text('info0', ('Learning size: \t\t%g \nActuator noise: \t%g ' + 
                             '\nSensor noise: \t\t%g') % (lsize, actuator_noise, sensor_noise))
        
        report.text('commands', str(self.commands))
        self.summarize(report, 0)
        
        
        self.state = self.N / 2
        self.clean()
        lsize = 100
        sensor_noise = 0
        actuator_noise = 2
        self.run_learning(lsize, actuator_noise=actuator_noise, sensor_noise=sensor_noise)
        report.text('info1', ('Learning size: \t\t%g \nActuator noise: \t%g ' + 
                             '\nSensor noise: \t\t%g') % (lsize, actuator_noise, sensor_noise))
        self.summarize(report, 1)
        
        
        self.state = self.N / 2
        self.clean()
#        lsize = 1000
        sensor_noise = 2
        actuator_noise = 0
        self.run_learning(lsize, actuator_noise=actuator_noise, sensor_noise=sensor_noise)
        report.text('info2', ('Learning size: \t\t%g \nActuator noise: \t%g ' + 
                             '\nSensor noise: \t\t%g') % (lsize, actuator_noise, sensor_noise))
        self.summarize(report, 2)
        
        report.to_html('env1d.html')
Example #24
0
def test_consistency_uncertainty():
    print 'here'
    pass
    contracts.disable_all()
    symdds = 'sym-dpchain1-120'
    print('instancing dds %s' % symdds)
    dds = get_conftools_discdds().instance(symdds)
    shape = dds.get_shape()
    d1f = dds.actions[0].get_diffeo2d_forward()
    d1b = dds.actions[0].get_diffeo2d_backward()
    
    fb = Diffeomorphism2D.compose(d1f, d1b)
    bf = Diffeomorphism2D.compose(d1b, d1f)
    identity = Diffeomorphism2D.identity(shape)
    print Diffeomorphism2D.distance_L2_infow(d1f, identity)
    print Diffeomorphism2D.distance_L2_infow(d1b, identity)
    print Diffeomorphism2D.distance_L2_infow(fb, identity)
    print Diffeomorphism2D.distance_L2_infow(bf, identity)

    action = dds.actions[0]
    action2 = consistency_based_uncertainty(action, None)

    r = Report(symdds)
    r.text('symdds', symdds)
    with r.subsection('action') as sub:
        action.display(sub)
    with r.subsection('action2') as sub:
        action2.display(sub)
#         
#     with r.subsection('misc') as sub:
#         d = d1f.get_discretized_diffeo()
#         f = sub.figure()
#         f.array_as_image('d0', d[:, :, 0])
#         f.array_as_image('d1', d[:, :, 1])
#         
        
#     with r.subsection('d1f') as sub:
#         d1f.display(sub)
#     with r.subsection('d1b') as sub:
#         d1b.display(sub)
# 
#     with r.subsection('fb') as sub:
#         fb.display(sub)
#     with r.subsection('bf') as sub:
#         bf.display(sub)
    
    r.to_html('test_consistency_uncertainty.html')
Example #25
0
def visualize_result(id_tc, id_algo, stats):
    """ Returns a report """

    result = stats['result']
    r = Report('%s-%s' % (id_tc, id_algo))
    #    tc = config.testcases.instance(id_tc)
    #    discdds = config.discdds.instance(tc.id_discdds)
    algo = stats['algo']
    tc = stats['tc']
    discdds = algo.get_dds()

    tc.display(r.section('testcase'), discdds=discdds)

    if not result.success:
        r.text('warning', 'Plannning unsuccesful')
    else:
        rsol = r.section('solution')
        rsol.text('plan', 'Plan: %s' % str(result.plan))

        y0 = tc.y0
        y1 = tc.y1
        y1plan = discdds.predict(y0, result.plan)
        mismatch = np.abs(y1.get_values() - y1plan.get_values()).sum(axis=2)

        f = rsol.figure(cols=4)
        zoom = lambda x: rgb_zoom(x, 8)

        f.data_rgb('y1plan',
                   zoom(y1plan.get_rgb()),
                   caption='plan prediction (certain)')
        f.data_rgb('y1plan_certain',
                   zoom(y1plan.get_rgb_uncertain()),
                   caption='certainty of prediction')

        f.data_rgb('mismatch',
                   zoom(scale(mismatch)),
                   caption='Mismatch value pixel by pixel '
                   '(zero for synthetic testcases...)')

    algo.plan_report(r.section('planning'), result, tc)

    extra = result.extra

    write_log_lines(r, extra)

    return r
def make_report(learners):
    print('make_report(learners) in diffeomorphism2d_continuous is used')
    for i, name in enumerate(learners):
        # init report
        report = Report(learners[i])
        
        learner = pickle.load(open(name))
        diffeo = learner.estimators[0].summarize()
        learner.estimators[0].show_areas(report, diffeo.d)
        cmd = learner.command_list[0]
#        pdb.set_trace()
        report.text('learner' + str(i), name)
        report.text('cmd' + str(i), str(cmd))
        diffeo.display(report, nbins=500)
        
        # Save report
        report.to_html(learners[i] + '.html')
Example #27
0
def make_report(learners):
    print('make_report(learners) in diffeomorphism2d_continuous is used')
    for i, name in enumerate(learners):
        # init report
        report = Report(learners[i])

        learner = pickle.load(open(name))
        diffeo = learner.estimators[0].summarize()
        learner.estimators[0].show_areas(report, diffeo.d)
        cmd = learner.command_list[0]
        #        pdb.set_trace()
        report.text('learner' + str(i), name)
        report.text('cmd' + str(i), str(cmd))
        diffeo.display(report, nbins=500)

        # Save report
        report.to_html(learners[i] + '.html')
Example #28
0
def report_results_pairs(func, objspec1_name, objspec2_name, results):
    reason2symbol = {}

    def get_string_result(res):
        if res is None:
            s = 'ok'
        elif isinstance(res, Skipped):
            s = 'skipped'
            reason = res.get_reason()
            if not reason in reason2symbol:
                reason2symbol[reason] = len(reason2symbol) + 1
            s += '(%s)' % reason2symbol[reason]

        elif isinstance(res, PartiallySkipped):
            parts = res.get_skipped_parts()
            s = 'no ' + ','.join(parts)
        else:
            print('how to interpret %s? ' % describe_value(res))
            s = '?'
        return s

    r = Report()
    if not results:
        r.text('warning', 'no test objects defined')
        return r

    rows = sorted(set([a for a, _ in results]))
    cols = sorted(set([b for _, b in results]))
    data = [[None for a in range(len(cols))] for b in range(len(rows))]
    # a nice bug: data = [[None * len(cols)] * len(rows)

    for ((i, id_object1),
         (j, id_object2)) in itertools.product(enumerate(rows),
                                               enumerate(cols)):
        res = results[(id_object1, id_object2)]
        data[i][j] = get_string_result(res)

    r.table('summary', rows=rows, data=data, cols=cols)

    expl = ""
    for reason, symbol in reason2symbol.items():
        expl += '(%s): %s\n' % (symbol, reason)
    r.text('notes', expl)

    return r
def report_traj_sample(rid, rows):
    r = Report(rid)

    print rows.dtype    
    x = rows['position'][:, 0]
    y = rows['position'][:, 1]
    
    f = r.figure()
    with f.plot('xy') as pl:
        pl.plot(x, y, '.', markersize=0.8)
        
        center = [0.18, 0.45]
        plot_arena_with_circles(pl, center, radius=1, col='g-')
        
        pl.axis('equal')
        
    r.text('length', '%s' % len(rows))
    return r
Example #30
0
def create_report_execution(exc_id,
                           tcid,
                           tc, algo_class, algo_params,
                          results):
    r = Report(exc_id)
     
    f = r.figure('misc', cols=3) 
    
    for w in ['gstats', 'lgstats']:
        if w in results:
            r.text(w, graph_errors_print(w, results[w]))

    G = tc.G
    landmarks = results['landmarks']
    
    G_all = results.get('G_all', None)
    G_landmarks = results.get('G_landmarks', None)
    lgstats = results.get('lgstats', None)
    
    if G_landmarks is not None: 
        print('plotting landmark positions %s' % G_landmarks.number_of_nodes())
        report_add_coordinates_and_edges(r, 'G_landmarks', G=G_landmarks,
                                          f=f, caption='landmarks positions')
        
        if  lgstats is not None:
            report_add_distances_errors_plot(r, nid='lgstats', stats=lgstats, f=f)
    else:
        print("could not find G_landmarks")
    
        
    if G_all is not None: 
        for u, v in G.edges():
            G_all.add_edge(u, v, **G[u][v]) 
        print('plotting full solution %s' % G_all.number_of_nodes())
        report_add_coordinates_and_edges(r, 'G_all', G=G_all,
                                         landmarks=landmarks,
#                                         plot_edges=True,
                                      f=f, caption='all nodes positions') 
        report_add_distances_errors_plot(r, nid='gstats', stats=results['gstats'], f=f)
    else:
        print("could not find G_all")
        
    r.text('phases_as_text', results['phases_as_text']) 
    return r 
Example #31
0
def visualize_result(config, id_tc, id_algo, stats):
    """ Returns a report """
    set_current_config(config)

    result = stats["result"]
    r = Report("%s-%s" % (id_tc, id_algo))
    #    tc = config.testcases.instance(id_tc)
    #    discdds = config.discdds.instance(tc.id_discdds)
    algo = stats["algo"]
    tc = stats["tc"]
    discdds = algo.get_dds()

    tc.display(r.section("testcase"), discdds=discdds)

    if not result.success:
        r.text("warning", "Plannning unsuccesful")
    else:
        rsol = r.section("solution")
        rsol.text("plan", "Plan: %s" % str(result.plan))

        y0 = tc.y0
        y1 = tc.y1
        y1plan = discdds.predict(y0, result.plan)
        mismatch = np.abs(y1.get_values() - y1plan.get_values()).sum(axis=2)

        f = rsol.figure(cols=4)
        zoom = lambda x: rgb_zoom(x, 8)

        f.data_rgb("y1plan", zoom(y1plan.get_rgb()), caption="plan prediction (certain)")
        f.data_rgb("y1plan_certain", zoom(y1plan.get_rgb_uncertain()), caption="certainty of prediction")

        f.data_rgb(
            "mismatch",
            zoom(scale(mismatch)),
            caption="Mismatch value pixel by pixel " "(zero for synthetic testcases...)",
        )

    algo.plan_report(r.section("planning"), result, tc)

    extra = result.extra

    write_log_lines(r, extra)

    return r
Example #32
0
def visualize_result(id_tc, id_algo, stats):
    """ Returns a report """
    
    result = stats['result']
    r = Report('%s-%s' % (id_tc, id_algo))
#    tc = config.testcases.instance(id_tc)
#    discdds = config.discdds.instance(tc.id_discdds)
    algo = stats['algo']
    tc = stats['tc']
    discdds = algo.get_dds()
    
    tc.display(r.section('testcase'), discdds=discdds)
    
    if not result.success:
        r.text('warning', 'Plannning unsuccesful')
    else:
        rsol = r.section('solution')
        rsol.text('plan', 'Plan: %s' % str(result.plan))
    
        y0 = tc.y0
        y1 = tc.y1
        y1plan = discdds.predict(y0, result.plan)
        mismatch = np.abs(y1.get_values() - y1plan.get_values()).sum(axis=2)
        
        f = rsol.figure(cols=4)
        zoom = lambda x: rgb_zoom(x, 8)
        
        f.data_rgb('y1plan', zoom(y1plan.get_rgb()),
                   caption='plan prediction (certain)')
        f.data_rgb('y1plan_certain', zoom(y1plan.get_rgb_uncertain()),
                   caption='certainty of prediction')
        
        f.data_rgb('mismatch', zoom(scale(mismatch)),
                   caption='Mismatch value pixel by pixel '
                            '(zero for synthetic testcases...)')
    
    
    algo.plan_report(r.section('planning'), result, tc)
    
    extra = result.extra
    
    write_log_lines(r, extra)
    
    return r
Example #33
0
def report_results_pairs(func, objspec1_name, objspec2_name, results):
    reason2symbol = {}

    def get_string_result(res):
        if res is None:
            s = 'ok'
        elif isinstance(res, Skipped):
            s = 'skipped'
            reason = res.get_reason()
            if not reason in reason2symbol:
                reason2symbol[reason] = len(reason2symbol) + 1
            s += '(%s)' % reason2symbol[reason]

        elif isinstance(res, PartiallySkipped):
            parts = res.get_skipped_parts()
            s = 'no ' + ','.join(parts)
        else:
            print('how to interpret %s? ' % describe_value(res))
            s = '?'
        return s

    r = Report()
    if not results:
        r.text('warning', 'no test objects defined')
        return r

    rows = sorted(set([a for a, _ in results]))
    cols = sorted(set([b for _, b in results]))
    data = [[None for a in range(len(cols))] for b in range(len(rows))]
    # a nice bug: data = [[None * len(cols)] * len(rows)

    for ((i, id_object1), (j, id_object2)) in itertools.product(enumerate(rows), enumerate(cols)):
        res = results[(id_object1, id_object2)]
        data[i][j] = get_string_result(res)

    r.table('summary', rows=rows, data=data, cols=cols)

    expl = ""
    for reason, symbol in list(reason2symbol.items()):
        expl += '(%s): %s\n' % (symbol, reason)
    r.text('notes', expl)

    return r
Example #34
0
def run_report(stat):
    #    def write_report(result, metric):
    report = Report('OnlinePlanningTest')
    report.text('summary', 'Visualizing of online planning test')

    labels = stat.labels
    for key in labels.keys():
        report.text(key, str(labels[key]))

    images = {
        'y_start': stat.y_start,
        'y_goal': stat.y_goal,
        'y_result': stat.y_result,
        'y_pred': stat.y_goal_pred,
        'y_found_pred': stat.y_found_pred
    }

    keys = ['y_start', 'y_goal', 'y_result', 'y_pred', 'y_found_pred']

    # Plot images
    f = report.figure(cols=len(images))
    for key in keys:
        with f.plot(key, caption=key) as pylab:
            pylab.imshow(images[key].get_rgb(), interpolation='nearest')

    data = []
    for key in keys:
        yr = images[key]
        this_row = []
        for key2 in keys:
            yc = images[key2]
            yr_yc = stat.metric_goal.distance(yr, yc)
            this_row.append(yr_yc)
        data.append(this_row)

    report.table('table',
                 data=data,
                 cols=images.keys(),
                 rows=images.keys(),
                 caption='Distances')

    return report
Example #35
0
def run_report(stat):
#    def write_report(result, metric):
    report = Report('OnlinePlanningTest')
    report.text('summary', 'Visualizing of online planning test')

    labels = stat.labels
    for key in labels.keys():
        report.text(key, str(labels[key]))
            
    images = {'y_start':stat.y_start,
              'y_goal':stat.y_goal,
              'y_result':stat.y_result,
              'y_pred':stat.y_goal_pred,
              'y_found_pred':stat.y_found_pred}
    
    keys = ['y_start',
              'y_goal',
              'y_result',
              'y_pred',
              'y_found_pred']
    
    # Plot images
    f = report.figure(cols=len(images))
    for key in keys:
        with f.plot(key, caption=key) as pylab:
            pylab.imshow(images[key].get_rgb(), interpolation='nearest')
        
    
    data = []
    for key in keys:
        yr = images[key]
        this_row = []
        for key2 in keys:
            yc = images[key2]
            yr_yc = stat.metric_goal.distance(yr, yc)
            this_row.append(yr_yc)
        data.append(this_row)
        
    report.table('table', data=data, cols=images.keys(), rows=images.keys(), caption='Distances')
    
    return report
Example #36
0
def allformats_report(id_ndp, ndp, libname, which):
    from mcdp_web.images.images import get_mime_for_format
    r = Report(id_ndp + '-' + which)
    from mcdp_library_tests.tests import get_test_library
    library = get_test_library(libname)
    mf = MakeFiguresNDP(ndp=ndp, library=library, yourname=id_ndp)
    formats = mf.available_formats(which)
    try:
        res = mf.get_figure(which, formats)
    except DPSemanticError as e:
        if 'Cannot abstract' in str(e):
            r.text('warning', 'Not connected. \n\n %s' % e)
            return r
    print('%s -> %s %s ' % (which, formats, map(len, [res[f] for f in formats])))
    fig = r.figure()
    for f in formats:
        data = res[f]
        mime = get_mime_for_format(f)
        dn = DataNode(f, data=data, mime=mime)
        fig.add_child(dn)
    return r    
Example #37
0
def report_mdp_display(mdp):
    r = Report()

    if not is_uniform(mdp):
        r.text('warn', 'Cannot create simulation of pds because not actions'
               ' are available in all states.')
        return r

    states = list(mdp.states())
    actions = all_actions(mdp)
    p = {states[0]: 1.0}

    N = 10
    plan = [actions[j] for j in np.random.randint(0, len(actions) - 1, N)]
    
    f = r.figure()
    for i, a in enumerate(plan):
        with f.plot('p%d' % i) as pylab:
            mdp.display_state_dist(pylab, p)
        p = mdp.evolve(p, a)

    return r
Example #38
0
def report_mdp_display(mdp):
    r = Report()

    if not is_uniform(mdp):
        r.text(
            'warn', 'Cannot create simulation of pds because not actions'
            ' are available in all states.')
        return r

    states = list(mdp.states())
    actions = all_actions(mdp)
    p = {states[0]: 1.0}

    N = 10
    plan = [actions[j] for j in np.random.randint(0, len(actions) - 1, N)]

    f = r.figure()
    for i, a in enumerate(plan):
        with f.plot('p%d' % i) as pylab:
            mdp.display_state_dist(pylab, p)
        p = mdp.evolve(p, a)

    return r
Example #39
0
def allformats_report(id_ndp, ndp, libname, which):
    from mcdp_web.images.images import get_mime_for_format
    from mcdp_library_tests.tests import get_test_library
    r = Report(id_ndp + '-' + which)
    library = get_test_library(libname)
    image_source = ImagesFromPaths(library.get_images_paths())
    mf = MakeFiguresNDP(ndp=ndp, image_source=image_source, yourname=id_ndp)
    formats = mf.available_formats(which)
    try:
        res = mf.get_figure(which, formats)
    except DPSemanticError as e:
        if 'Cannot abstract' in str(e):
            r.text('warning', 'Not connected. \n\n %s' % e)
            return r
    print('%s -> %s %s ' % (which, formats, map(len, [res[f]
                                                      for f in formats])))
    fig = r.figure()
    for f in formats:
        data = res[f]
        mime = get_mime_for_format(f)
        dn = DataNode(f, data=data, mime=mime)
        fig.add_child(dn)
    return r
Example #40
0
def table_by_rows(id_report, samples, rows_field, cols_fields, source_descs):
    samples2 = StoreResultsDict(samples)

    class Missing(dict):
        def __missing__(self, key):
            logger.warning("Description for %r missing." % key)
            d = WithDescription(name=key, symbol="\\text{%s}" % key, desc=None)
            self[key] = d
            return d

    source_descs = Missing(source_descs)

    r = Report(id_report)
    data_views = [DataView.from_string(x, source_descs) for x in cols_fields]
    # data: list of list of list
    rows_field, data, reduced, display = summarize_data(
        samples2, rows_field, data_views)
    rows = ["$%s$" % source_descs[x].get_symbol() for x in rows_field]
    cols = ["$%s$" % x.get_symbol() for x in data_views]
    r.table("table", data=display, cols=cols, rows=rows)
    r.data("table_data",
           data=reduced,
           caption="Data without presentation applied.")
    r.data("table_data_source",
           data=data,
           caption="Source data, before reduction.")

    row_desc = "\n".join([
        "- $%s$: %s" % (x.get_symbol(), x.get_desc())
        for x in list(map(source_descs.__getitem__, rows_field))
    ])
    col_desc = "\n".join(
        ["- $%s$: %s" % (x.get_symbol(), x.get_desc()) for x in data_views])
    r.text("row_desc", rst_escape_slash(row_desc), mime=MIME_RST)
    r.text("col_desc", rst_escape_slash(col_desc), mime=MIME_RST)
    return r
Example #41
0
def report_dp1(dp, imp=None):
    r = Report()
    gg = dp_graph_flow(dp, imp=imp)
    gg_figure(r, 'graph', gg)

    r.text('long', dp.repr_long())
# 
#     try:
#         S, alpha, beta = dp.get_normal_form()
# 
#         s = ""
#         s += 'S: %s' % S
#         s += '\nα: %s' % alpha
#         s += '\nβ: %s' % beta
# 
#         r.text('normalform', s)
#         r.text('tree_long', dp.tree_long())
#     except Exception as e:
#         warnings.warn('Normal form not implemented %s' % e)



    M = dp.get_imp_space()
    r.text('I', str(M))


    if False:
        R = dp.get_res_space()
        F = dp.get_fun_space()
        Rinf = R.get_top()
        Fbot = F.get_bottom()
        if M == PosetProduct((R_dimensionless,)):
            s = ""
            ms = [0.0, 0.25, 0.5, 0.75, 1.0]
            for m in ms:
                feasible = dp.is_feasible(Fbot, (m,), Rinf)
                s += '\n m = %s  = %s' % (m, feasible)
            r.text('scalarres', s)
        else:
            m = M.witness()
            print(Fbot, m, Rinf)
            feasible = dp.is_feasible(Fbot, m, Rinf)
            r.text('some', 'bot feasible( %s, %s,%s): %s' % (Fbot, m, Rinf, feasible))

    return r
Example #42
0
def report_dp1(dp, imp=None):
    r = Report()
    gg = dp_graph_flow(dp, imp=imp)
    gg_figure(r, 'graph', gg)

    r.text('long', dp.repr_long())
    #
    #     try:
    #         S, alpha, beta = dp.get_normal_form()
    #
    #         s = ""
    #         s += 'S: %s' % S
    #         s += '\nα: %s' % alpha
    #         s += '\nβ: %s' % beta
    #
    #         r.text('normalform', s)
    #         r.text('tree_long', dp.tree_long())
    #     except Exception as e:
    #         warnings.warn('Normal form not implemented %s' % e)

    M = dp.get_imp_space()
    r.text('I', str(M))

    if False:
        R = dp.get_res_space()
        F = dp.get_fun_space()
        Rinf = R.get_top()
        Fbot = F.get_bottom()
        if M == PosetProduct((R_dimensionless, )):
            s = ""
            ms = [0.0, 0.25, 0.5, 0.75, 1.0]
            for m in ms:
                feasible = dp.is_feasible(Fbot, (m, ), Rinf)
                s += '\n m = %s  = %s' % (m, feasible)
            r.text('scalarres', s)
        else:
            m = M.witness()
            print(Fbot, m, Rinf)
            feasible = dp.is_feasible(Fbot, m, Rinf)
            r.text('some',
                   'bot feasible( %s, %s,%s): %s' % (Fbot, m, Rinf, feasible))

    return r
Example #43
0
def create_report_subset(id, desc, saccades):
    report = Report('subset_' + id)
    report.text('description', '''%s\n%d saccades total.''' % (desc, len(saccades)))
    
    #f = report.figure(cols=3)
 
    saccade_angle = saccades['saccade_angle']
    approach_angle = saccades['approach_angle']
           
    with report.data_pylab('distance_from_center') as pylab:
        distance = saccades['distance_from_center']
        pylab.hist(distance, 100)
        pylab.xlabel('meters')
        pylab.ylabel('number of saccades')
        pylab.title('Distance from center (%s)' % id)
        a = pylab.axis()
        pylab.axis([0, 1, 0, a[3]])
        
    #report.last().add_to(f)
    
    with report.data_pylab('distance_from_wall') as pylab:
        distance = saccades['distance_from_wall']
        pylab.hist(distance, 100)
        pylab.xlabel('meters')
        pylab.ylabel('number of saccades')
        pylab.title('Distance from center (%s)' % id)
        a = pylab.axis()
        pylab.axis([0, 1, 0, a[3]])
        
    #report.last().add_to(f)
  
    with report.data_pylab('saccade_angle') as pylab:
        pylab.hist(saccade_angle, range(-180, 185, 5))
        pylab.xlabel('degrees')
        pylab.ylabel('number of saccades')
        pylab.title('Saccade angle (%s)' % id)
        a = pylab.axis()
        pylab.axis([-180, 180, 0, a[3]])
    
    #  report.last().add_to(f)
  
    with report.data_pylab('approach_angle') as pylab:
        pylab.hist(approach_angle, range(-60, 65, 5))
        pylab.xlabel('degrees')
        pylab.ylabel('number of saccades')
        pylab.title('Approach angle (%s)' % id)
        a = pylab.axis()
        pylab.axis([-60, 60, 0, a[3]])
    
    #  report.last().add_to(f)
  
    with report.data_pylab('approach_vs_saccade') as pylab:
        pylab.plot(approach_angle, saccade_angle, '.')
        pylab.xlabel('approach angle (deg)')
        pylab.ylabel('saccade angle (deg)')
        pylab.title('Approach vs saccade angle (%s)' % id)
        a = pylab.axis()
        pylab.axis([-60, 60, -180, 180])
    
    #  report.last().add_to(f)
  
    
    # compute probability
    approach, probability_left, probability_right, margin_left, margin_right = \
        compute_turning_probability(approach_angle=approach_angle,
                                    saccade_angle=saccade_angle)
    with report.data_pylab('turning_probability') as pylab:
        n = len(approach)
        el = np.zeros((2,n))
        el[0,:] = +(margin_left[0,:]-probability_left)
        el[1,:] = -(margin_left[1,:]-probability_left)
        pylab.errorbar(approach, probability_left, el,None, None,
                       ecolor='g', label='left',  capsize=8, elinewidth=1)
        er = np.zeros((2,n))
        er[0,:] = +(margin_right[0,:]-probability_right)
        er[1,:] = -(margin_right[1,:]-probability_right)
        pylab.errorbar(approach, probability_right, er, None, None,
                       ecolor='r', label='right',   capsize=8, elinewidth=1)

        pylab.plot(approach, probability_left, 'g-', label='left')
        pylab.plot(approach, probability_right, 'r-', label='right')
        pylab.xlabel('approach angle (deg)')
        pylab.ylabel('probability of turning')
        pylab.title('Probability of turning (%s)' % id)
        a = pylab.axis()
        pylab.plot([0, 0], [0.2, 0.8], 'k--')
        pylab.axis([-60, 60, 0, 1])
        pylab.legend()
 
    #   report.last().add_to(f)
 
    bin_size = 10
    saccade_bin_centers = np.array(range(-180, 185, bin_size))
    n = len(saccade_bin_centers)
    saccade_bins = np.zeros(shape=(n + 1))
    saccade_bins[0:n] = saccade_bin_centers - bin_size
    saccade_bins[n] = saccade_bin_centers[-1]
    
    bin_centers = np.array(range(-50, 55, 5))
    bin_size = 15
    distributions = []
    for angle in bin_centers:
        indices, = np.nonzero(
                    np.logical_and(
                        approach_angle > angle - bin_size,
                        approach_angle < angle + bin_size
                    ))
        x = saccade_angle[indices]
        if len(indices) > 0:
            # Otherwise histogram divides by 0
            hist, edges = np.histogram(x, bins=saccade_bins, normed=True) #@UnusedVariable
        else:
            hist, edges = np.histogram(x, bins=saccade_bins, normed=False) #@UnusedVariable
        
        distributions.append(hist)
 
    with report.data_pylab('distribution_vs_approach2') as pylab:
        for k in range(len(bin_centers)):
            label = '%d' % bin_centers[k]
            pylab.plot(saccade_bin_centers, distributions[k], '-', label=label)
        #a = pylab.axis()
         
        pylab.legend()
        pylab.xlabel('saccade angle')
        pylab.ylabel('density')
 
    with report.data_pylab('distribution_vs_approach', figsize=(8, 20)) as pylab:
        # get the maximum density
        # max_density = max(map(max, distributions))
        num_plots = len(bin_centers)
        for k in range(num_plots):
            rect = [0.1, k * 1.0 / num_plots, 0.8, 1.0 / num_plots]
            pylab.axes(rect)
            label = '%d' % bin_centers[k]
            pylab.plot(saccade_bin_centers, distributions[k], '-', label=label)
            # pylab.axis([-180, 180, 0, max_density])
        #a = pylab.axis()
            pylab.legend()
        pylab.xlabel('saccade angle')
        pylab.ylabel('density')         
    
    f = report.figure(cols=3)
    f.sub('distance_from_center', caption='Distance from center')
    f.sub('saccade_angle', caption='Saccade angle')
    f.sub('approach_angle', caption='Approach angle')
    f.sub('approach_vs_saccade', caption='Approach vs saccade angle')
    f.sub('turning_probability', caption='Probability of turning')
    f.sub('distribution_vs_approach2', caption='Saccade distribution vs approach angle')
    f.sub('distribution_vs_approach', caption='Saccade distribution vs approach angle')
    
    return report
Example #44
0
def report_results_pairs_jobs(context, func, objspec1_name, objspec2_name,
                              jobs):
    """ This version gets the jobs ID """
    reason2symbol = {}

    def get_string_result(res):
        if res is None:
            s = 'ok'
        elif isinstance(res, Skipped):
            s = 'skipped'
            reason = res.get_reason()
            if not reason in reason2symbol:
                reason2symbol[reason] = len(reason2symbol) + 1
            s += '(%s)' % reason2symbol[reason]

        elif isinstance(res, PartiallySkipped):
            parts = res.get_skipped_parts()
            s = 'no ' + ','.join(parts)
        else:
            print('how to interpret %s? ' % describe_value(res))
            s = '?'
        return s

    r = Report()
    if not jobs:
        r.text('warning', 'no test objects defined')
        return r

    rows = sorted(set([a for a, _ in jobs]))
    cols = sorted(set([b for _, b in jobs]))
    data = [[None for a in range(len(cols))] for b in range(len(rows))]
    # a nice bug: data = [[None * len(cols)] * len(rows)

    db = context.get_compmake_db()

    comb = itertools.product(enumerate(rows), enumerate(cols))
    for ((i, id_object1), (j, id_object2)) in comb:
        job_id = jobs[(id_object1, id_object2)]
        cache = get_job_cache(job_id, db)

        if cache.state == Cache.DONE:
            res = get_job_userobject(job_id, db)
            s = get_string_result(res)
        elif cache.state == Cache.FAILED:
            s = 'FAIL'
        elif cache.state == Cache.BLOCKED:
            s = 'blocked'
#         elif cache.state == Cache.IN_PROGRESS:
#             s = '(in progress)'
        elif cache.state == Cache.NOT_STARTED:
            s = ' '

        data[i][j] = s

    r.table('summary', rows=rows, data=data, cols=cols)

    expl = ""
    for reason, symbol in reason2symbol.items():
        expl += '(%s): %s\n' % (symbol, reason)
    r.text('notes', expl)

    return r
def report_example1(param1, param2):
    r = Report()
    r.text('type', 'This is one report')
    r.text('param1', '%s' % param1)
    r.text('param2', '%s' % param2)
    return r
def report_example2(param1, param2):
    r = Report()
    r.text('type', 'This is another report')
    r.text('param1', '%s' % param1)
    r.text('param2', '%s' % param2)
    return r
Example #47
0
def report_stats(records, id_ddss, id_streams, id_distances):
    r = Report('precision-stats')
    r.data('records', records)
    
    colors = list(islice(cycle(['r', 'g', 'b', 'k', 'y', 'm']), 50))
    perc = 10
    W = 0.2
    
    for i, id_dds in enumerate(id_ddss):
        r.text('dds%s' % i, id_dds)
    
    
    streams_sets = generate_stream_sets(id_streams)
    for stream_set, id_distance in itertools.product(streams_sets, id_distances):
        f = r.figure(cols=2)
        with f.plot('distance_legend', caption='Streams: %s, Distance: %s' 
                    % (stream_set['label'], id_distance),
                    **dp_predstats_fig) as pylab:
            ax = pylab.subplot(111)
            for i, id_dds in enumerate(id_ddss):
                which = (records['id_discdds'] == id_dds).astype('int')
                for id_stream in stream_set['id_streams']:
                    which += (records['id_stream'] == id_stream).astype('int')
                which = (which / (len(stream_set['id_streams']) + 1)).astype('bool')
                
                delta = records[which]['delta']
                
                distance = records[which][id_distance]
                
                step = float(i) / max(len(id_ddss) - 1, 1)
                xstep = W * 2 * (step - 0.5) 
                fancy_error_display(ax, delta + xstep, distance,
                                    colors[i], perc=perc, label='%s' % i)
            
        with f.plot('distance', caption='treams: %s, Distance: %s' 
                    % (stream_set['label'], id_distance),
                    **dp_predstats_fig) as pylab:
            ax = pylab.subplot(111)
            for i, id_dds in enumerate(id_ddss):
                which = (records['id_discdds'] == id_dds).astype('int')
                for id_stream in stream_set['id_streams']:
                    which += (records['id_stream'] == id_stream).astype('int')
                which = (which / (len(stream_set['id_streams']) + 1)).astype('bool')
                
                delta = records[which]['delta']
                
                distance = records[which][id_distance]
                
                step = float(i) / max(len(id_ddss) - 1, 1)
                xstep = W * 2 * (step - 0.5) 
                fancy_error_display(ax, delta + xstep, distance,
                                    colors[i], perc=perc, label='%s' % i)
            
            legend_put_below(ax)
            
        
        with f.plot('difference', caption='Difference from learner_0, SStreams: %s, Distance: %s' 
                    % (stream_set['label'], id_distance),
                    **dp_predstats_fig) as pylab:
            ax = pylab.subplot(111)
            
            which0 = (records['id_discdds'] == id_ddss[0])
            _ = records[which0]['delta']  # delta0
            distance0 = records[which0][id_distance]
            for i, id_dds in enumerate(id_ddss[1:]):
                which = (records['id_discdds'] == id_dds).astype('int')
                for id_stream in stream_set['id_streams']:
                    which += (records['id_stream'] == id_stream).astype('int')
                which = (which / (len(stream_set['id_streams']) + 1)).astype('bool')
                
                delta = records[which]['delta']
                
                distance = records[which][id_distance]
                difference = distance0 - distance
                
                step = float(i) / max(len(id_ddss) - 1, 1)
                xstep = W * 2 * (step - 0.5) 
                fancy_error_display(ax, delta + xstep, difference,
                                    colors[i + 1], perc=perc, label='%s' % i)
    return r
Example #48
0
def main():
    if not vehicles_has_cairo:
        logger.error('This program cannot be run if Cairo is not installed.')
        return
    from vehicles_cairo import (vehicles_cairo_display_pdf,
                                vehicles_cairo_display_png,
                                vehicles_cairo_display_svg)

    parser = OptionParser(usage=usage)
    parser.disable_interspersed_args()

    parser.add_option("--vehicle",
                      default='d_SE2_rb_v-rf360',
                      help="ID vehicle [%default].")
    parser.add_option("--world",
                      default='stochastic_box_10',
                      help="ID world [%default].")
    parser.add_option("-n",
                      default=1,
                      type='int',
                      help="number of simulations [%default].")
    parser.add_option("--outdir",
                      "-o",
                      default='display_demo',
                      help="output directory [%default]")
    parser.add_option("--figsize",
                      default=10,
                      type='float',
                      help="figsize (inches) [%default]")
    parser.add_option("-z",
                      "--zoom",
                      default=0,
                      type='float',
                      help="zoom in meters; 0 for full view [%default]")
    parser.add_option("-g",
                      "--grid",
                      default=1,
                      type='float',
                      help="grid size in meters; 0 for no grid [%default]")

    parser.add_option("--cairo", default=False, action='store_true')

    parser.add_option("--seed", default=None, type='int')

    (options, args) = parser.parse_args()
    if args:
        raise Exception()

    id_vehicle = options.vehicle
    id_world = options.world

    logger.info('id_vehicle: %s' % id_vehicle)
    logger.info('  id_world: %s' % id_world)

    if options.seed is None:
        options.seed = np.random.randint(1000000)

    np.random.seed(seed=options.seed)
    logger.info('Using seed %s (your lucky number is %s)' %
                (options.seed, np.random.randint(1000)))

    vehicle = VehiclesConfig.vehicles.instance(
        id_vehicle)  # @UndefinedVariable
    world = VehiclesConfig.worlds.instance(id_world)  # @UndefinedVariable

    simulation = VehicleSimulation(vehicle, world)

    from reprep import Report, MIME_PDF
    basename = 'display-%s-%s' % (id_vehicle, id_world)
    r = Report(basename)
    r.text('seed', 'Seed = %s' % options.seed)
    for i in range(options.n):
        sec = r.node('simulation%d' % i)
        f = sec.figure()

        simulation.new_episode()
        simulation.compute_observations()

        sim_state = simulation.to_yaml()

        plot_params = dict(grid=options.grid,
                           zoom=options.zoom,
                           show_sensor_data=True)
        #            with f.plot('start', figsize=(options.figsize,
        #                                                options.figsize)) as pylab:
        #                    display_all(pylab, sim_state, **plot_params)

        with f.data_file('start_cairo_png', MIME_PNG) as filename:
            vehicles_cairo_display_png(filename,
                                       width=800,
                                       height=800,
                                       sim_state=sim_state,
                                       **plot_params)

        with f.data_file('start_cairo_pdf', MIME_PDF) as filename:
            vehicles_cairo_display_pdf(filename,
                                       width=800,
                                       height=800,
                                       sim_state=sim_state,
                                       **plot_params)

        with f.data_file('start_cairo_svg', MIME_SVG) as filename:
            vehicles_cairo_display_svg(filename,
                                       width=800,
                                       height=800,
                                       sim_state=sim_state,
                                       **plot_params)

    filename = os.path.join(options.outdir, 'index.html')
    logger.info('Writing to %r.' % filename)
    r.to_html(filename)
Example #49
0
def report_stats(records, id_ddss, id_streams, id_distances):
    r = Report('precision-stats')
    r.data('records', records)

    colors = list(islice(cycle(['r', 'g', 'b', 'k', 'y', 'm']), 50))
    perc = 10
    W = 0.2

    for i, id_dds in enumerate(id_ddss):
        r.text('dds%s' % i, id_dds)

    streams_sets = generate_stream_sets(id_streams)
    for stream_set, id_distance in itertools.product(streams_sets,
                                                     id_distances):
        f = r.figure(cols=2)
        with f.plot('distance_legend',
                    caption='Streams: %s, Distance: %s' %
                    (stream_set['label'], id_distance),
                    **dp_predstats_fig) as pylab:
            ax = pylab.subplot(111)
            for i, id_dds in enumerate(id_ddss):
                which = (records['id_discdds'] == id_dds).astype('int')
                for id_stream in stream_set['id_streams']:
                    which += (records['id_stream'] == id_stream).astype('int')
                which = (which /
                         (len(stream_set['id_streams']) + 1)).astype('bool')

                delta = records[which]['delta']

                distance = records[which][id_distance]

                step = float(i) / max(len(id_ddss) - 1, 1)
                xstep = W * 2 * (step - 0.5)
                fancy_error_display(ax,
                                    delta + xstep,
                                    distance,
                                    colors[i],
                                    perc=perc,
                                    label='%s' % i)

        with f.plot('distance',
                    caption='treams: %s, Distance: %s' %
                    (stream_set['label'], id_distance),
                    **dp_predstats_fig) as pylab:
            ax = pylab.subplot(111)
            for i, id_dds in enumerate(id_ddss):
                which = (records['id_discdds'] == id_dds).astype('int')
                for id_stream in stream_set['id_streams']:
                    which += (records['id_stream'] == id_stream).astype('int')
                which = (which /
                         (len(stream_set['id_streams']) + 1)).astype('bool')

                delta = records[which]['delta']

                distance = records[which][id_distance]

                step = float(i) / max(len(id_ddss) - 1, 1)
                xstep = W * 2 * (step - 0.5)
                fancy_error_display(ax,
                                    delta + xstep,
                                    distance,
                                    colors[i],
                                    perc=perc,
                                    label='%s' % i)

            legend_put_below(ax)

        with f.plot(
                'difference',
                caption='Difference from learner_0, SStreams: %s, Distance: %s'
                % (stream_set['label'], id_distance),
                **dp_predstats_fig) as pylab:
            ax = pylab.subplot(111)

            which0 = (records['id_discdds'] == id_ddss[0])
            _ = records[which0]['delta']  # delta0
            distance0 = records[which0][id_distance]
            for i, id_dds in enumerate(id_ddss[1:]):
                which = (records['id_discdds'] == id_dds).astype('int')
                for id_stream in stream_set['id_streams']:
                    which += (records['id_stream'] == id_stream).astype('int')
                which = (which /
                         (len(stream_set['id_streams']) + 1)).astype('bool')

                delta = records[which]['delta']

                distance = records[which][id_distance]
                difference = distance0 - distance

                step = float(i) / max(len(id_ddss) - 1, 1)
                xstep = W * 2 * (step - 0.5)
                fancy_error_display(ax,
                                    delta + xstep,
                                    difference,
                                    colors[i + 1],
                                    perc=perc,
                                    label='%s' % i)
    return r
Example #50
0
def empty_report():
    report = Report('OnlinePlanning')
    report.text('summary', 'Empty report')
    return report
Example #51
0
 def testText(self):
     r = Report("test")
     r.text("ciao", "come va?")
Example #52
0
 def testText2(self):
     r = Report("test")
     r.text("ciao", "come va?", MIME_PLAIN)
Example #53
0
def make_rep1(title):
    report = Report(title)
    report.text('Summary', 'Test report 1')
    return report
Example #54
0
        # Merge img to one channel
        gray = np.mean(img, 2)
        # Calculate differences
        #    pdb.set_trace()
        for i in range(len(ovars)):
            [S, ker, _] = ovars[i]
            Si = convolve2d(gray, ker, boundary='wrap', mode='same')
            S += Si

        n += 1  # Refresh counter

print('Bag Processed')
#pdb.set_trace()
# Initiate report
report = Report('ImageStatistics')
report.text('summary', 'Statistics of images in processed bag')

vmax = 20
vmin = -20

for [S, _, name] in ovars:
    # Calculate mean value from sum
    Sn = S[2:-2, 2:-2] / n

    # Estimate parameters and plot analytic prob function
    #    gkde = stats.gaussian_kde(Sn.flatten())

    #    S_clip = np.zeros(Sn.shape)
    #    S_clip[Sn < vmax] = Sn[Sn < vmax]
    #    S_clip[Sn > vmin] = Sn[Sn > vmin]
    #    pdb.set_trace()
Example #55
0
def report_example2(param1, param2):
    r = Report()
    r.text('type', 'This is another report')
    r.text('param1', '%s' % param1)
    r.text('param2', '%s' % param2)
    return r
Example #56
0
def report_example1(param1, param2):
    r = Report()
    r.text('type', 'This is one report')
    r.text('param1', '%s' % param1)
    r.text('param2', '%s' % param2)
    return r
Example #57
0
def report_class1(ob1):
    from reprep import Report
    r = Report()
    r.text('ob1', ob1)
    return r
Example #58
0
def report_class2(ob2):
    from reprep import Report
    r = Report()
    r.text('ob2', ob2)
    return r
Example #59
0
def empty_report():
    report = Report('OnlinePlanning')
    report.text('summary', 'Empty report')
    return report