Example #1
0
def _calculate(benchmark_name, dimensionality, verbose):
    """Calculate the requested measurement."""
    benchmark = benchmarks.get(benchmark_name)
    f = benchmark.function
    f_min = benchmark.min(0)
    f_max = benchmark.max(0)
    return ruggedness.FEM_0_1(f, f_min, f_max, dimensionality, verbose=verbose)
Example #2
0
File: dm.py Project: phlippieb/mpy
def _calculate(benchmark_name, dimensionality, verbose=False):
    """Calculate the requested measurement."""
    benchmark = benchmarks.get(benchmark_name)
    f = benchmark.function
    f_min = benchmark.min(0)
    f_max = benchmark.max(0)
    return funnels.DM(f, f_min, f_max, dimensionality, verbose=verbose)
Example #3
0
def _calculate(benchmark_name, dimensionality):
    """Calculate the requested measurement."""
    benchmark = benchmarks.get(benchmark_name)
    f = benchmark.function
    f_min = benchmark.min(0)
    f_max = benchmark.max(0)
    return searchability.FCI_soc(f, f_min, f_max, dimensionality)
Example #4
0
File: fdc.py Project: phlippieb/mpy
def _calculate(benchmark_name, dimensionality):
    """Calculate the requested measurement."""
    benchmark = benchmarks.get(benchmark_name)
    f = benchmark.function
    f_min = benchmark.min(0)
    f_max = benchmark.max(0)
    return deception.FDC(f, f_min, f_max, dimensionality)
Example #5
0
def _calculate(benchmark_name, dimensionality, step_size_fraction):
    """Calculate the requested measurement."""
    benchmark = benchmarks.get(benchmark_name)
    f = benchmark.function
    f_min = benchmark.min(0)
    f_max = benchmark.max(0)
    g_avg, g_dev = gradients.G_measures(f,
                                        f_min,
                                        f_max,
                                        dimensionality,
                                        step_size_fraction=step_size_fraction)
    return g_avg, g_dev
Example #6
0
def process(batch_num, num_batches, verbose):
    config = _config(batch_num)
    while config is not None:
        benchmark_name, dimensionality, experiment = config
        benchmark = benchmarks.get(benchmark_name)
        if benchmark.is_dimensionality_valid(dimensionality):
            print 'DM: getting', benchmark_name, dimensionality, experiment
            dm.get(benchmark_name, dimensionality, experiment, verbose=verbose)
        else:
            print 'DM: skipping', benchmark_name, dimensionality, experiment, '(invalid number of dimensions)'
        batch_num += num_batches
        config = _config(batch_num)
Example #7
0
def _calculate(benchmark_name, dimensionality, epsilon, step_size_fraction):
    """Calculate the requested measurement."""
    benchmark = benchmarks.get(benchmark_name)
    f = benchmark.function
    f_min = benchmark.min(0)
    f_max = benchmark.max(0)
    pn, lsn = neutrality.PN_LSN(f,
                                f_min,
                                f_max,
                                dimensionality,
                                epsilon=epsilon,
                                step_size_fraction=step_size_fraction)
    return pn, lsn
Example #8
0
def process(batch_num, num_batches, verbose):
    config = _config(batch_num)
    while config is not None:
        benchmark_name, dimensionality, experiment, is_soc = config
        benchmark = benchmarks.get(benchmark_name)
        if benchmark.is_dimensionality_valid(dimensionality):
            if is_soc:
                print 'FCI_soc: getting', benchmark_name, dimensionality, experiment
                # fci_sigma.get(benchmark_name, dimensionality, verbose=verbose)
                fci_soc.get(benchmark_name, dimensionality,
                            experiment, verbose=verbose)
            else:
                print 'FCI_cog: getting', benchmark_name, dimensionality, experiment
                fci_cog.get(benchmark_name, dimensionality,
                            experiment, verbose=verbose)
        else:
            print 'FCI: skipping', benchmark_name, dimensionality, '(invalid number of dimensions)'
        batch_num += num_batches
        config = _config(batch_num)