def _calculate(benchmark_name, dimensionality, verbose): """Calculate the requested measurement.""" benchmark = benchmarks.get(benchmark_name) f = benchmark.function f_min = benchmark.min(0) f_max = benchmark.max(0) return ruggedness.FEM_0_1(f, f_min, f_max, dimensionality, verbose=verbose)
def _calculate(benchmark_name, dimensionality, verbose=False): """Calculate the requested measurement.""" benchmark = benchmarks.get(benchmark_name) f = benchmark.function f_min = benchmark.min(0) f_max = benchmark.max(0) return funnels.DM(f, f_min, f_max, dimensionality, verbose=verbose)
def _calculate(benchmark_name, dimensionality): """Calculate the requested measurement.""" benchmark = benchmarks.get(benchmark_name) f = benchmark.function f_min = benchmark.min(0) f_max = benchmark.max(0) return searchability.FCI_soc(f, f_min, f_max, dimensionality)
def _calculate(benchmark_name, dimensionality): """Calculate the requested measurement.""" benchmark = benchmarks.get(benchmark_name) f = benchmark.function f_min = benchmark.min(0) f_max = benchmark.max(0) return deception.FDC(f, f_min, f_max, dimensionality)
def _calculate(benchmark_name, dimensionality, step_size_fraction): """Calculate the requested measurement.""" benchmark = benchmarks.get(benchmark_name) f = benchmark.function f_min = benchmark.min(0) f_max = benchmark.max(0) g_avg, g_dev = gradients.G_measures(f, f_min, f_max, dimensionality, step_size_fraction=step_size_fraction) return g_avg, g_dev
def process(batch_num, num_batches, verbose): config = _config(batch_num) while config is not None: benchmark_name, dimensionality, experiment = config benchmark = benchmarks.get(benchmark_name) if benchmark.is_dimensionality_valid(dimensionality): print 'DM: getting', benchmark_name, dimensionality, experiment dm.get(benchmark_name, dimensionality, experiment, verbose=verbose) else: print 'DM: skipping', benchmark_name, dimensionality, experiment, '(invalid number of dimensions)' batch_num += num_batches config = _config(batch_num)
def _calculate(benchmark_name, dimensionality, epsilon, step_size_fraction): """Calculate the requested measurement.""" benchmark = benchmarks.get(benchmark_name) f = benchmark.function f_min = benchmark.min(0) f_max = benchmark.max(0) pn, lsn = neutrality.PN_LSN(f, f_min, f_max, dimensionality, epsilon=epsilon, step_size_fraction=step_size_fraction) return pn, lsn
def process(batch_num, num_batches, verbose): config = _config(batch_num) while config is not None: benchmark_name, dimensionality, experiment, is_soc = config benchmark = benchmarks.get(benchmark_name) if benchmark.is_dimensionality_valid(dimensionality): if is_soc: print 'FCI_soc: getting', benchmark_name, dimensionality, experiment # fci_sigma.get(benchmark_name, dimensionality, verbose=verbose) fci_soc.get(benchmark_name, dimensionality, experiment, verbose=verbose) else: print 'FCI_cog: getting', benchmark_name, dimensionality, experiment fci_cog.get(benchmark_name, dimensionality, experiment, verbose=verbose) else: print 'FCI: skipping', benchmark_name, dimensionality, '(invalid number of dimensions)' batch_num += num_batches config = _config(batch_num)