Example #1
0
def calculateOrbitalPeriod( measurement1, measurement2 ):
    '''
    To solve the period of a circular orbit, we need Newton's gravitational
    constant and two of the following three items:

    G = Newton's gravitational constant

    m = planetary mass (i.e., mass of the thing being orbited)
    r = orbit radius (the distance from the center of mass)
    v = orbital velocity

    ---- period in terms of radius and mass
    T = 2*pi*sqrt( r^3/G*m )

    ---- period in terms of radius and velocity
    T = 2*pi*r/v

    ---- period in terms of mass and velocity
    T = 2*pi*G*m/v^3
    '''
    validUnitTypes = [
        [ 'mass', 'length' ],
        [ 'velocity', 'length' ],
        [ 'mass', 'velocity' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'orbital_period\' requires specific measurement types (see help)' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'length' in arguments:
            bRadius = True
            radius = arguments[ 'length' ]
        else:
            bRadius = False
            velocity = arguments[ 'velocity' ]
    else:
        # radius and velocity
        radius = arguments[ 'length' ]
        velocity = arguments[ 'velocity' ]
        period = divide( getProduct( [ 2, pi, radius ] ), velocity )
        return period.convert( 'second' )

    if bRadius:
        # radius and mass
        term = divide( getPower( radius, 3 ), multiply( getNewtonsConstant( ), mass ) )
        period = getProduct( [ 2, pi, getRoot( term, 2 ) ] )
    else:
        # velocity and mass
        period = divide( getProduct( [ 2, pi, getNewtonsConstant( ), mass ] ),
                         getPower( velocity, 3 ) )

    return period.convert( 'second' )
Example #2
0
def calculateOrbitalRadius( measurement1, measurement2 ):
    '''
    To solve the radius of a circular orbit, we need Newton's gravitational
    constant and two of the following three items:

    G = Newton's gravitational constant

    m = planetary mass (i.e., mass of the thing being orbited)
    T = orbital period
    v = orbital velocity

    ---- radius in terms of period and mass
    r = cbrt( T^2*G*m/4*pi^2 )

    ---- radius in terms of velocity and mass
    r = G*m/v^2

    ---- radius in terms of velocity and period
    r = v*T/2*pi
    '''
    validUnitTypes = [
        [ 'mass', 'time' ],
        [ 'velocity', 'time' ],
        [ 'mass', 'velocity' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'orbital_radius\' requires specific measurement types (see help)' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'time' in arguments:
            bPeriod = True
            period = arguments[ 'time' ]
        else:
            bPeriod = False
            velocity = arguments[ 'velocity' ]
    else:
        # period and velocity
        period = arguments[ 'time' ]
        velocity = arguments[ 'velocity' ]
        radius = divide( multiply( velocity, period ), fmul( 2, pi ) )
        return radius.convert( 'meter' )

    if bPeriod:
        # period and mass
        term = divide( getProduct( [ getPower( period, 2 ), getNewtonsConstant( ), mass ] ),
                       fmul( 4, power( pi, 2 ) ) )
        radius = getRoot( term, 3 )
    else:
        # velocity and mass
        radius = divide( multiply( getNewtonsConstant( ), mass ), getPower( velocity, 2 ) )

    return radius.convert( 'meter' )
Example #3
0
def getConeSurfaceArea( r, h ):
    if not isinstance( r, RPNMeasurement ):
        return getConeSurfaceArea( RPNMeasurement( real( r ), 'meter' ), h )

    if r.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'cone_area\' argument 1 must be a length' )

    if not isinstance( h, RPNMeasurement ):
        return getConeSurfaceArea( r, RPNMeasurement( real( h ), 'meter' ) )

    if h.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'cone_area\' argument 2 must be a length' )

    hypotenuse = getRoot( add( getPower( r, 2 ), getPower( h, 2 ) ), 2 )

    return getProduct( [ pi, r, add( r, hypotenuse ) ] )
Example #4
0
def getIcosahedronVolume( n ):
    if not isinstance( n, RPNMeasurement ):
        return getIcosahedronVolume( RPNMeasurement( real( n ), 'meter' ) )

    if n.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'icosahedron_volume\' argument must be a length' )

    return getProduct( [ fdiv( 5, 12 ), fadd( 3, sqrt( 5 ) ), getPower( n, 3 ) ] ).convert( 'meter^3' )
Example #5
0
def getIcosahedronSurfaceArea( n ):
    if not isinstance( n, RPNMeasurement ):
        return getIcosahedronVolume( RPNMeasurement( real( n ), 'meter' ) )

    if n.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'icosahedron_area\' argument must be a length' )

    return getProduct( [ 5, sqrt( 3 ), getPower( n, 2 ) ] ).convert( 'meter^2' )
Example #6
0
def getOctahedronVolume( n ):
    if not isinstance( n, RPNMeasurement ):
        return getOctahedronVolume( RPNMeasurement( real( n ), 'meter' ) )

    if n.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'octahedron_volume\' argument must be a length' )

    return divide( multiply( sqrt( 2 ), getPower( n, 3 ) ), 3 )
Example #7
0
def getTetrahedronVolume( n ):
    if not isinstance( n, RPNMeasurement ):
        return getTetrahedronVolume( RPNMeasurement( real( n ), 'meter' ) )

    if n.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'tetrahedron_volume\' argument must be a length' )

    return divide( getPower( n, 3 ), fmul( 6, sqrt( 2 ) ) )
Example #8
0
def getTetrahedronSurfaceArea( n ):
    if not isinstance( n, RPNMeasurement ):
        return getTetrahedronSurfaceArea( RPNMeasurement( real( n ), 'meter' ) )

    if n.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'tetrahedron_area\' argument must be a length' )

    return multiply( sqrt( 3 ), getPower( n, 2 ) )
Example #9
0
def getDodecahedronVolume( n ):
    if not isinstance( n, RPNMeasurement ):
        return getDodecahedronVolume( RPNMeasurement( real( n ), 'meter' ) )

    if n.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'dodecahedron_volume\' argument must be a length' )

    return divide( multiply( fadd( 15, fmul( 7, sqrt( 5 ) ) ), getPower( n, 3 ) ), 4 ).convert( 'meter^3' )
Example #10
0
def getDodecahedronSurfaceArea( n ):
    if not isinstance( n, RPNMeasurement ):
        return getDodecahedronSurfaceArea( RPNMeasurement( real( n ), 'meter' ) )

    if n.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'dodecahedron_area\' argument must be a length' )

    area = getProduct( [ 3, getRoot( add( 25, fmul( 10, sqrt( 5 ) ) ), 2 ), getPower( n, 2 ) ] )
    return area.convert( 'meter^2' )
Example #11
0
def getAntiprismSurfaceArea( n, k ):
    if real( n ) < 3:
        raise ValueError( 'the number of sides of the prism cannot be less than 3,' )

    if not isinstance( k, RPNMeasurement ):
        return getAntiprismSurfaceArea( n, RPNMeasurement( real( k ), 'meter' ) )

    if k.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'antiprism_area\' argument 2 must be a length' )

    result = getProduct( [ fdiv( n, 2 ), fadd( cot( fdiv( pi, n ) ), sqrt( 3 ) ), getPower( k, 2 ) ] )
    return result.convert( 'meter^2' )
Example #12
0
def calculateVelocity( measurement1, measurement2 ):
    validUnitTypes = [
        [ 'length', 'time' ],
        [ 'acceleration', 'length' ],
        [ 'jerk', 'length' ],
        [ 'jounce', 'length' ],
        [ 'velocity', 'time' ],
        [ 'velocity', 'length' ],
        [ 'acceleration', 'time' ],
        [ 'jerk', 'time' ],
        [ 'jounce', 'time' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if 'velocity' in arguments:
        velocity = arguments[ 'velocity' ]
    elif 'length' in arguments:
        if 'time' in arguments:
            velocity = divide( arguments[ 'length' ], arguments[ 'time' ] )
        elif 'acceleration' in arguments:
            acceleration = arguments[ 'acceleration' ]
            time = getRoot( multiply( divide( arguments[ 'length' ], acceleration ), 2 ), 2 )
            velocity = multiply( acceleration, time )
        elif 'jerk' in arguments:
            jerk = arguments[ 'jerk' ]
            time = getRoot( multiply( divide( arguments[ 'length' ], jerk ), 6 ), 3 )
            velocity = getProduct( [ jerk, time, time, fdiv( 1, 2 ) ] )
        elif 'jounce' in arguments:
            jounce = arguments[ 'jounce' ]
            time = getRoot( multiply( divide( arguments[ 'length' ], jounce ), 24 ), 4 )
            velocity = getProduct( [ jounce, time, time, time, fdiv( 1, 6 ) ] )
    elif 'acceleration' in arguments:
        velocity = divide( multiply( arguments[ 'acceleration' ], arguments[ 'time' ] ), 2 )
    elif 'jerk' in arguments:
        velocity = divide( multiply( arguments[ 'jerk' ], getPower( arguments[ 'time' ], 2 ) ), 4 )
    elif 'jounce' in arguments:
        velocity = divide( multiply( arguments[ 'jounce' ], getPower( arguments[ 'time' ], 3 ) ), 8 )

    return velocity.convert( 'meter/second' )
Example #13
0
def getRegularPolygonArea( n, k ):
    if real( n ) < 3:
        raise ValueError( 'the number of sides of the polygon cannot be less than 3,' )

    if not isinstance( k, RPNMeasurement ):
        return getRegularPolygonArea( n, RPNMeasurement( real( k ), 'meter' ) )

    dimensions = k.getDimensions( )

    if dimensions != { 'length' : 1 }:
        raise ValueError( '\'polygon_area\' argument 2 must be a length' )

    return multiply( fdiv( n, fmul( 4, tan( fdiv( pi, n ) ) ) ), getPower( k, 2 ) ).convert( 'meter^2' )
Example #14
0
def getConeVolume( r, h ):
    if not isinstance( r, RPNMeasurement ):
        return getConeVolume( RPNMeasurement( real( r ), 'meter' ), h )

    if r.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'cone_volume\' argument 1 must be a length' )

    if not isinstance( h, RPNMeasurement ):
        return getConeVolume( r, RPNMeasurement( real( h ), 'meter' ) )

    if h.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'cone_volume\' argument 2 must be a length' )

    return getProduct( [ pi, getPower( r, 2 ), divide( h, 3 ) ] )
Example #15
0
def getTorusVolume( R, s ):
    if not isinstance( R, RPNMeasurement ):
        return getTorusVolume( RPNMeasurement( real( R ), 'meter' ), s )

    if R.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'torus_volume\' argument 1 must be a length' )

    if not isinstance( s, RPNMeasurement ):
        return getTorusVolume( R, RPNMeasurement( real( s ), 'meter' ) )

    if s.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'torus_volume\' argument 2 must be a length' )

    return getProduct( [ 2, power( pi, 2 ), R, getPower( s, 2 ) ] )
Example #16
0
def calculateSurfaceGravity( measurement1, measurement2 ):
    validUnitTypes = [
        [ 'mass', 'density' ],
        [ 'mass', 'length' ],
        [ 'mass', 'volume' ],
        [ 'density', 'length' ],
        [ 'density', 'volume' ],
    ]

    arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes )

    if not arguments:
        raise ValueError( '\'surface_gravity\' requires length and mass measurements' )

    if 'mass' in arguments:
        mass = arguments[ 'mass' ]

        if 'length' in arguments:
            length = arguments[ 'length' ]
        elif 'density' in arguments:
            volume = divide( mass, arguments[ 'density' ] )
            length = getNSphereRadius( volume, 3 )
        else:
            length = getNSphereRadius( arguments[ 'volume' ], 3 )
    elif 'volume' in arguments:
        # density, volume
        volume = arguments[ 'volume' ]
        mass = multiply( arguments[ 'density' ], volume )
        length = getNSphereRadius( volume, 3 )
    else:
        # density, length
        length = arguments[ 'length' ]
        volume = getPower( length, 3 )
        mass = multiply( arguments[ 'density' ], volume )

    gravity = multiply( divide( mass, getPower( length, 2 ) ), getNewtonsConstant( ) )
    return gravity.convert( 'meters/seconds^2' )
Example #17
0
def getAntiprismVolume( n, k ):
    if real( n ) < 3:
        raise ValueError( 'the number of sides of the prism cannot be less than 3,' )

    if not isinstance( k, RPNMeasurement ):
        return getAntiprismVolume( n, RPNMeasurement( real( k ), 'meter' ) )

    if k.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'antiprism_volume\' argument 2 must be a length' )

    result = getProduct( [ fdiv( fprod( [ n, sqrt( fsub( fmul( 4, cos( cos( fdiv( pi, fmul( n, 2 ) ) ) ) ), 1 ) ),
                                   sin( fdiv( fmul( 3, pi ), fmul( 2, n ) ) ) ] ),
                           fmul( 12, sin( sin( fdiv( pi, n ) ) ) ) ),
                           sin( fdiv( fmul( 3, pi ), fmul( 2, n ) ) ),
                           getPower( k, 3 ) ] )

    return result.convert( 'meter^3' )
Example #18
0
def getPrismVolume( n, k, h ):
    if real( n ) < 3:
        raise ValueError( 'the number of sides of the prism cannot be less than 3,' )

    if not isinstance( k, RPNMeasurement ):
        return getPrismVolume( n, RPNMeasurement( real( k ), 'meter' ), h )

    if not isinstance( h, RPNMeasurement ):
        return getPrismVolume( n, k, RPNMeasurement( real( h ), 'meter' ) )

    if k.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'prism_volume\' argument 2 must be a length' )

    if h.getDimensions( ) != { 'length' : 1 }:
        raise ValueError( '\'prism_volume\' argument 3 must be a length' )

    return getProduct( [ fdiv( n, 4 ), h, getPower( k, 2 ), cot( fdiv( pi, n ) ) ] ).convert( 'meter^3' )
Example #19
0
def getPlanckTime( ):
    return getRoot( getReducedPlanckConstant( ).multiply( getNewtonsConstant( ) ).divide(
                        getPower( getSpeedOfLight( ), 5 ) ), 2 )
Example #20
0
def getPlanckTemperature( ):
    return getRoot( getReducedPlanckConstant( ).multiply( getPower( getSpeedOfLight( ), 5 ) ).
        divide( getNewtonsConstant( ).multiply( getPower( getBoltzmannsConstant( ), 2 ) ) ), 2 )
Example #21
0
def calculateSchwarzchildRadius( mass ):
    validateUnits( mass, 'mass' )

    radius = getProduct( [ 2, getNewtonsConstant( ), mass ] ).divide( getPower( getSpeedOfLight( ), 2 ) )
    return radius.convert( 'meter' )