def calculateOrbitalPeriod( measurement1, measurement2 ): ''' To solve the period of a circular orbit, we need Newton's gravitational constant and two of the following three items: G = Newton's gravitational constant m = planetary mass (i.e., mass of the thing being orbited) r = orbit radius (the distance from the center of mass) v = orbital velocity ---- period in terms of radius and mass T = 2*pi*sqrt( r^3/G*m ) ---- period in terms of radius and velocity T = 2*pi*r/v ---- period in terms of mass and velocity T = 2*pi*G*m/v^3 ''' validUnitTypes = [ [ 'mass', 'length' ], [ 'velocity', 'length' ], [ 'mass', 'velocity' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'orbital_period\' requires specific measurement types (see help)' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'length' in arguments: bRadius = True radius = arguments[ 'length' ] else: bRadius = False velocity = arguments[ 'velocity' ] else: # radius and velocity radius = arguments[ 'length' ] velocity = arguments[ 'velocity' ] period = divide( getProduct( [ 2, pi, radius ] ), velocity ) return period.convert( 'second' ) if bRadius: # radius and mass term = divide( getPower( radius, 3 ), multiply( getNewtonsConstant( ), mass ) ) period = getProduct( [ 2, pi, getRoot( term, 2 ) ] ) else: # velocity and mass period = divide( getProduct( [ 2, pi, getNewtonsConstant( ), mass ] ), getPower( velocity, 3 ) ) return period.convert( 'second' )
def calculateOrbitalRadius( measurement1, measurement2 ): ''' To solve the radius of a circular orbit, we need Newton's gravitational constant and two of the following three items: G = Newton's gravitational constant m = planetary mass (i.e., mass of the thing being orbited) T = orbital period v = orbital velocity ---- radius in terms of period and mass r = cbrt( T^2*G*m/4*pi^2 ) ---- radius in terms of velocity and mass r = G*m/v^2 ---- radius in terms of velocity and period r = v*T/2*pi ''' validUnitTypes = [ [ 'mass', 'time' ], [ 'velocity', 'time' ], [ 'mass', 'velocity' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'orbital_radius\' requires specific measurement types (see help)' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'time' in arguments: bPeriod = True period = arguments[ 'time' ] else: bPeriod = False velocity = arguments[ 'velocity' ] else: # period and velocity period = arguments[ 'time' ] velocity = arguments[ 'velocity' ] radius = divide( multiply( velocity, period ), fmul( 2, pi ) ) return radius.convert( 'meter' ) if bPeriod: # period and mass term = divide( getProduct( [ getPower( period, 2 ), getNewtonsConstant( ), mass ] ), fmul( 4, power( pi, 2 ) ) ) radius = getRoot( term, 3 ) else: # velocity and mass radius = divide( multiply( getNewtonsConstant( ), mass ), getPower( velocity, 2 ) ) return radius.convert( 'meter' )
def getConeSurfaceArea( r, h ): if not isinstance( r, RPNMeasurement ): return getConeSurfaceArea( RPNMeasurement( real( r ), 'meter' ), h ) if r.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'cone_area\' argument 1 must be a length' ) if not isinstance( h, RPNMeasurement ): return getConeSurfaceArea( r, RPNMeasurement( real( h ), 'meter' ) ) if h.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'cone_area\' argument 2 must be a length' ) hypotenuse = getRoot( add( getPower( r, 2 ), getPower( h, 2 ) ), 2 ) return getProduct( [ pi, r, add( r, hypotenuse ) ] )
def getIcosahedronVolume( n ): if not isinstance( n, RPNMeasurement ): return getIcosahedronVolume( RPNMeasurement( real( n ), 'meter' ) ) if n.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'icosahedron_volume\' argument must be a length' ) return getProduct( [ fdiv( 5, 12 ), fadd( 3, sqrt( 5 ) ), getPower( n, 3 ) ] ).convert( 'meter^3' )
def getIcosahedronSurfaceArea( n ): if not isinstance( n, RPNMeasurement ): return getIcosahedronVolume( RPNMeasurement( real( n ), 'meter' ) ) if n.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'icosahedron_area\' argument must be a length' ) return getProduct( [ 5, sqrt( 3 ), getPower( n, 2 ) ] ).convert( 'meter^2' )
def getOctahedronVolume( n ): if not isinstance( n, RPNMeasurement ): return getOctahedronVolume( RPNMeasurement( real( n ), 'meter' ) ) if n.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'octahedron_volume\' argument must be a length' ) return divide( multiply( sqrt( 2 ), getPower( n, 3 ) ), 3 )
def getTetrahedronVolume( n ): if not isinstance( n, RPNMeasurement ): return getTetrahedronVolume( RPNMeasurement( real( n ), 'meter' ) ) if n.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'tetrahedron_volume\' argument must be a length' ) return divide( getPower( n, 3 ), fmul( 6, sqrt( 2 ) ) )
def getTetrahedronSurfaceArea( n ): if not isinstance( n, RPNMeasurement ): return getTetrahedronSurfaceArea( RPNMeasurement( real( n ), 'meter' ) ) if n.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'tetrahedron_area\' argument must be a length' ) return multiply( sqrt( 3 ), getPower( n, 2 ) )
def getDodecahedronVolume( n ): if not isinstance( n, RPNMeasurement ): return getDodecahedronVolume( RPNMeasurement( real( n ), 'meter' ) ) if n.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'dodecahedron_volume\' argument must be a length' ) return divide( multiply( fadd( 15, fmul( 7, sqrt( 5 ) ) ), getPower( n, 3 ) ), 4 ).convert( 'meter^3' )
def getDodecahedronSurfaceArea( n ): if not isinstance( n, RPNMeasurement ): return getDodecahedronSurfaceArea( RPNMeasurement( real( n ), 'meter' ) ) if n.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'dodecahedron_area\' argument must be a length' ) area = getProduct( [ 3, getRoot( add( 25, fmul( 10, sqrt( 5 ) ) ), 2 ), getPower( n, 2 ) ] ) return area.convert( 'meter^2' )
def getAntiprismSurfaceArea( n, k ): if real( n ) < 3: raise ValueError( 'the number of sides of the prism cannot be less than 3,' ) if not isinstance( k, RPNMeasurement ): return getAntiprismSurfaceArea( n, RPNMeasurement( real( k ), 'meter' ) ) if k.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'antiprism_area\' argument 2 must be a length' ) result = getProduct( [ fdiv( n, 2 ), fadd( cot( fdiv( pi, n ) ), sqrt( 3 ) ), getPower( k, 2 ) ] ) return result.convert( 'meter^2' )
def calculateVelocity( measurement1, measurement2 ): validUnitTypes = [ [ 'length', 'time' ], [ 'acceleration', 'length' ], [ 'jerk', 'length' ], [ 'jounce', 'length' ], [ 'velocity', 'time' ], [ 'velocity', 'length' ], [ 'acceleration', 'time' ], [ 'jerk', 'time' ], [ 'jounce', 'time' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if 'velocity' in arguments: velocity = arguments[ 'velocity' ] elif 'length' in arguments: if 'time' in arguments: velocity = divide( arguments[ 'length' ], arguments[ 'time' ] ) elif 'acceleration' in arguments: acceleration = arguments[ 'acceleration' ] time = getRoot( multiply( divide( arguments[ 'length' ], acceleration ), 2 ), 2 ) velocity = multiply( acceleration, time ) elif 'jerk' in arguments: jerk = arguments[ 'jerk' ] time = getRoot( multiply( divide( arguments[ 'length' ], jerk ), 6 ), 3 ) velocity = getProduct( [ jerk, time, time, fdiv( 1, 2 ) ] ) elif 'jounce' in arguments: jounce = arguments[ 'jounce' ] time = getRoot( multiply( divide( arguments[ 'length' ], jounce ), 24 ), 4 ) velocity = getProduct( [ jounce, time, time, time, fdiv( 1, 6 ) ] ) elif 'acceleration' in arguments: velocity = divide( multiply( arguments[ 'acceleration' ], arguments[ 'time' ] ), 2 ) elif 'jerk' in arguments: velocity = divide( multiply( arguments[ 'jerk' ], getPower( arguments[ 'time' ], 2 ) ), 4 ) elif 'jounce' in arguments: velocity = divide( multiply( arguments[ 'jounce' ], getPower( arguments[ 'time' ], 3 ) ), 8 ) return velocity.convert( 'meter/second' )
def getRegularPolygonArea( n, k ): if real( n ) < 3: raise ValueError( 'the number of sides of the polygon cannot be less than 3,' ) if not isinstance( k, RPNMeasurement ): return getRegularPolygonArea( n, RPNMeasurement( real( k ), 'meter' ) ) dimensions = k.getDimensions( ) if dimensions != { 'length' : 1 }: raise ValueError( '\'polygon_area\' argument 2 must be a length' ) return multiply( fdiv( n, fmul( 4, tan( fdiv( pi, n ) ) ) ), getPower( k, 2 ) ).convert( 'meter^2' )
def getConeVolume( r, h ): if not isinstance( r, RPNMeasurement ): return getConeVolume( RPNMeasurement( real( r ), 'meter' ), h ) if r.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'cone_volume\' argument 1 must be a length' ) if not isinstance( h, RPNMeasurement ): return getConeVolume( r, RPNMeasurement( real( h ), 'meter' ) ) if h.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'cone_volume\' argument 2 must be a length' ) return getProduct( [ pi, getPower( r, 2 ), divide( h, 3 ) ] )
def getTorusVolume( R, s ): if not isinstance( R, RPNMeasurement ): return getTorusVolume( RPNMeasurement( real( R ), 'meter' ), s ) if R.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'torus_volume\' argument 1 must be a length' ) if not isinstance( s, RPNMeasurement ): return getTorusVolume( R, RPNMeasurement( real( s ), 'meter' ) ) if s.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'torus_volume\' argument 2 must be a length' ) return getProduct( [ 2, power( pi, 2 ), R, getPower( s, 2 ) ] )
def calculateSurfaceGravity( measurement1, measurement2 ): validUnitTypes = [ [ 'mass', 'density' ], [ 'mass', 'length' ], [ 'mass', 'volume' ], [ 'density', 'length' ], [ 'density', 'volume' ], ] arguments = matchUnitTypes( [ measurement1, measurement2 ], validUnitTypes ) if not arguments: raise ValueError( '\'surface_gravity\' requires length and mass measurements' ) if 'mass' in arguments: mass = arguments[ 'mass' ] if 'length' in arguments: length = arguments[ 'length' ] elif 'density' in arguments: volume = divide( mass, arguments[ 'density' ] ) length = getNSphereRadius( volume, 3 ) else: length = getNSphereRadius( arguments[ 'volume' ], 3 ) elif 'volume' in arguments: # density, volume volume = arguments[ 'volume' ] mass = multiply( arguments[ 'density' ], volume ) length = getNSphereRadius( volume, 3 ) else: # density, length length = arguments[ 'length' ] volume = getPower( length, 3 ) mass = multiply( arguments[ 'density' ], volume ) gravity = multiply( divide( mass, getPower( length, 2 ) ), getNewtonsConstant( ) ) return gravity.convert( 'meters/seconds^2' )
def getAntiprismVolume( n, k ): if real( n ) < 3: raise ValueError( 'the number of sides of the prism cannot be less than 3,' ) if not isinstance( k, RPNMeasurement ): return getAntiprismVolume( n, RPNMeasurement( real( k ), 'meter' ) ) if k.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'antiprism_volume\' argument 2 must be a length' ) result = getProduct( [ fdiv( fprod( [ n, sqrt( fsub( fmul( 4, cos( cos( fdiv( pi, fmul( n, 2 ) ) ) ) ), 1 ) ), sin( fdiv( fmul( 3, pi ), fmul( 2, n ) ) ) ] ), fmul( 12, sin( sin( fdiv( pi, n ) ) ) ) ), sin( fdiv( fmul( 3, pi ), fmul( 2, n ) ) ), getPower( k, 3 ) ] ) return result.convert( 'meter^3' )
def getPrismVolume( n, k, h ): if real( n ) < 3: raise ValueError( 'the number of sides of the prism cannot be less than 3,' ) if not isinstance( k, RPNMeasurement ): return getPrismVolume( n, RPNMeasurement( real( k ), 'meter' ), h ) if not isinstance( h, RPNMeasurement ): return getPrismVolume( n, k, RPNMeasurement( real( h ), 'meter' ) ) if k.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'prism_volume\' argument 2 must be a length' ) if h.getDimensions( ) != { 'length' : 1 }: raise ValueError( '\'prism_volume\' argument 3 must be a length' ) return getProduct( [ fdiv( n, 4 ), h, getPower( k, 2 ), cot( fdiv( pi, n ) ) ] ).convert( 'meter^3' )
def getPlanckTime( ): return getRoot( getReducedPlanckConstant( ).multiply( getNewtonsConstant( ) ).divide( getPower( getSpeedOfLight( ), 5 ) ), 2 )
def getPlanckTemperature( ): return getRoot( getReducedPlanckConstant( ).multiply( getPower( getSpeedOfLight( ), 5 ) ). divide( getNewtonsConstant( ).multiply( getPower( getBoltzmannsConstant( ), 2 ) ) ), 2 )
def calculateSchwarzchildRadius( mass ): validateUnits( mass, 'mass' ) radius = getProduct( [ 2, getNewtonsConstant( ), mass ] ).divide( getPower( getSpeedOfLight( ), 2 ) ) return radius.convert( 'meter' )