Example #1
0
def doone(seed,
          sn=100,
          nlam=400,
          config_name='tests/test.yaml',
          doplot=False,
          resol=1000):

    if config_name != si.fname:
        si.config = utils.read_config(config_name)
        si.fname = config_name
    config = si.config
    st = np.random.get_state()
    np.random.seed(seed)

    # read data
    lamcen = 5000.
    #lamcen_air = lamcen / (1.0 + 2.735182E-4 + 131.4182 / lamcen**2 +
    #                       2.76249E8 / lamcen**4)
    v0 = np.random.normal(0, 300)
    slope = (np.random.uniform(-2, 2))
    wresol = (lamcen / resol / 2.35)
    lam = np.linspace(4600, 5400, nlam)
    #spec0 = (1 - 0.02 * np.exp(-0.5 * ((lam - lamcen1) / w)**2))*lam**slope
    teff = np.random.uniform(3000, 12000)
    feh = np.random.uniform(-2, 0)
    alpha = np.random.uniform(0, 1)
    logg = np.random.uniform(0, 5)
    c = 299792.458
    lam1 = lam / np.sqrt((1 + v0 / c) / (1 - v0 / c))
    spec0 = mktemps.getspec(lam1, teff, logg, feh, alpha,
                            wresol=wresol) * lam**slope
    spec0 = spec0 / np.median(spec0) * 10**np.random.uniform(-3, 3)
    espec = spec0 / sn
    spec = np.random.normal(spec0, espec)
    # construct specdata object
    specdata = [spec_fit.SpecData('config1', lam, spec, espec)]
    options = {'npoly': 10}
    paramDict0 = {'logg': 2.5, 'teff': 5000, 'feh': -1, 'alpha': 0.5}
    #, 'vsini': 0.0}
    #    fixParam = ['vsini']
    res = vel_fit.process(
        specdata,
        paramDict0,
        #                  fixParam=fixParam,
        config=config,
        options=options)

    ret = (v0, res['vel'], res['vel_err'])
    if doplot:
        plt.figure(figsize=(6, 2), dpi=300)
        plt.plot(specdata[0].lam, specdata[0].spec, 'k-')
        plt.plot(specdata[0].lam, res['yfit'][0], 'r-')
        plt.tight_layout()
        plt.savefig('plot_accuracy_test.png')
        #1/0
    np.random.set_state(st)
    return ret
Example #2
0
def test_fake_grid():
    config = utils.read_config(path + '/test.yaml')

    # read data
    lam = np.linspace(4600, 5400, 800)
    v0 = np.random.normal(0, 100)
    lam1 = lam / (1 + v0 / 3e5)
    resol = 1000.
    lamcen = 5000
    w = lamcen / resol / 2.35

    spec0 = getspec(lam1, 5000, 2, -1, 0.2, wresol=w)
    espec = spec0 * 0.01
    spec = np.random.normal(spec0, espec)
    # construct specdata object
    specdata = [spec_fit.SpecData('config1_grid', lam, spec, espec)]
    options = {'npoly': 15}
    paramDict0 = {
        'logg': 2,
        'teff': 5000,
        'feh': -0.2,
        'alpha': 0.2,
        'vsini': 0.1
    }
    fixParam = []  #'vsini']
    res = vel_fit.process(specdata,
                          paramDict0,
                          fixParam=fixParam,
                          config=config,
                          options=options)

    print(res['vel'] - v0, res['vel_err'])
    print(res['param'])
    if True:
        plt.figure(figsize=(6, 2), dpi=300)
        plt.plot(specdata[0].lam, specdata[0].spec, 'k-')
        plt.plot(specdata[0].lam, res['yfit'][0], 'r-')
        plt.tight_layout()
        plt.savefig(path + '/plot_test_fit_fake_grid.png')
Example #3
0
def proc_weave(fnames, fig_prefix, config, threadid, nthreads):
    """
    Process One single file with desi spectra

    Parameters:
    -----------
    fname: str
        The filename with the spectra to be fitted
    ofname: str
        The filename where the table with parameters will be stored
    fig_prefix: str
        The prefix where the figures will be stored
    """

    options = {'npoly': 15}

    print('Processing', fnames)
    fnames = fnames.split(',')
    #if not valid_file(fnames[0]):
    #    return

    tab = pyfits.getdata(fnames[0], 'FIBTABLE')
    hdr = pyfits.getheader(fnames[0])
    #mws = tab['MWS_TARGET']
    targetid = tab['TARGID']
    brick_name = hdr['OBID'].replace('.', '').replace('/', '').replace('_', '')
    #xids = np.nonzero(mws)[0]
    #setups = ('b', 'r', 'z')
    fluxes = {}
    ivars = {}
    waves = {}
    masks = {}
    setups = ('b', 'r')
    targcat = tab['TARGCAT']
    programs = ['GA_LRhighlat', 'GA_LRdisc']
    xids = np.zeros(len(targcat), dtype=bool)
    for _p in programs:
        xids = xids | (targcat == _p)
    xids = np.nonzero(xids)[0]
    if len(xids) > 0:
        tids = np.linspace(0, nthreads, len(xids), False).astype(int)
        assert (tids.max() <= (nthreads - 1))
        xids = xids[tids == threadid]
    if len(xids) == 0:
        return None

    arms = [pyfits.getheader(f)['CAMERA'].replace('WEAVE', '') for f in fnames]
    if arms == ['RED', 'BLUE'] or arms == ['BLUE', 'RED']:
        if arms == ['RED', 'BLUE']:
            fnames = fnames[::-1]
    else:
        raise Exception('No RED/BLUE setups')

    for fname, s in zip(fnames, setups):
        curarm = {'b': 'BLUE', 'r': 'RED'}[s]
        fluxes[s] = pyfits.getdata(fname, '%s_DATA' % curarm)
        ivars[s] = pyfits.getdata(fname, '%s_IVAR' % curarm)
        masks[s] = (ivars[s] == 0).astype(int)
        pix = np.arange(fluxes[s].shape[1])
        wc = pywcs.WCS(pyfits.getheader(fname, '%s_DATA' % curarm))
        waves[s] = wc.all_pix2world(np.array([pix, pix * 0]).T, 0).T[0] * 1e10
        tellurics = (((waves[s] >= 8130) & (waves[s] < 8350)) |
                     ((waves[s] >= 6850) & (waves[s] < 7000)) |
                     ((waves[s] >= 8940) & (waves[s] < 9240)) |
                     ((waves[s] >= 9250) & (waves[s] < 9545)) |
                     ((waves[s] >= 9550) & (waves[s] < 10000)))
        #medivar = np.nanmedian(ivars[s], axis=-1)
        # inflate the errors in the tellurics 1000 times
        ivars[s][:, tellurics] = 1. / 100. / np.maximum(
            fluxes[s][:, tellurics], 1)**2  #medivar[:, None]/1000**2
        # put the S/N in the telluric region to 1/10.

    outdict = pandas.DataFrame()
    large_error = 1e9
    for curid in xids:
        specdata = []
        curbrick = brick_name
        curtargetid = targetid[curid].replace('"', '')
        fig_fname = fig_prefix + '_%s_%s.png' % (curbrick, curtargetid)
        sns = {}
        chisqs = {}
        for s in setups:
            spec = fluxes[s][curid]
            curivars = ivars[s][curid]
            badmask = (curivars <= 0) | (masks[s][curid] > 0)
            curivars[badmask] = 1. / large_error**2
            espec = 1. / curivars**.5
            sns[s] = np.nanmedian(spec / espec)
            specdata.append(
                spec_fit.SpecData('weave_%s' % s,
                                  waves[s],
                                  spec,
                                  espec,
                                  badmask=badmask))
        t1 = time.time()
        res = fitter_ccf.fit(specdata, config)
        t2 = time.time()
        paramDict0 = res['best_par']
        fixParam = []
        if res['best_vsini'] is not None:
            paramDict0['vsini'] = res['best_vsini']
        res1 = vel_fit.process(specdata,
                               paramDict0,
                               fixParam=fixParam,
                               config=config,
                               options=options)
        t3 = time.time()
        chisq_cont_array = spec_fit.get_chisq_continuum(
            specdata, options=options)['chisq_array']
        t4 = time.time()
        curD = {}
        curD['brickname'] = curbrick
        curD['target_id'] = curtargetid
        curD['vrad'] = res1['vel']
        curD['vrad_err'] = res1['vel_err']
        curD['logg'] = res1['param']['logg']
        curD['teff'] = res1['param']['teff']
        curD['alpha'] = res1['param']['alpha']
        curD['feh'] = res1['param']['feh']
        curD['logg_err'] = res1['param_err']['logg']
        curD['teff_err'] = res1['param_err']['teff']
        curD['alpha_err'] = res1['param_err']['alpha']
        curD['feh_err'] = res1['param_err']['feh']
        curD['chisq_tot'] = sum(res1['chisq_array'])
        for i, s in enumerate(setups):
            curD['chisq_%s' % s] = res1['chisq_array'][i]
            curD['chisq_c_%s' % s] = float(chisq_cont_array[i])
            curD['sn_%s' % (s, )] = sns[s]

        curD['vsini'] = res1['vsini']
        outdict = outdict.append(curD, True)
        title = 'logg=%.1f teff=%.1f [Fe/H]=%.1f [alpha/Fe]=%.1f Vrad=%.1f+/-%.1f' % (
            res1['param']['logg'], res1['param']['teff'], res1['param']['feh'],
            res1['param']['alpha'], res1['vel'], res1['vel_err'])
        make_plot(specdata, res1, title, fig_fname)
    outtab = atpy.Table.from_pandas(outdict)
    return outtab
Example #4
0
def get_specdata(waves, fluxes, ivars, masks, seqid, setups):
    """ Return the list of SpecDatas for one single object

    Parameters
    ----------

    waves: ndarray
        1d wavelength array
    fluxes: ndarray
        2d flux array
    ivars: ndarray
        2d array of inverse variances
    masks: ndarray
        2d array of masks
    seqid: int
        Which spectral row to extract
    setups: list
        List of configurations

    Returns
    -------
    ret: list
        List of specfit.SpecData objects or None if failed

    """
    large_error = 1000
    sds = []
    minerr_frac = 0.3  # if the error is smaller than this times median error
    # clamp the uncertainty
    for s in setups:
        spec = fluxes[s][seqid] * 1
        curivars = ivars[s][seqid] * 1
        medspec = np.nanmedian(spec)
        if medspec == 0:
            medspec = np.nanmedian(spec[spec > 0])
            if not np.isfinite(medspec):
                medspec = np.nanmedian(np.abs(spec))
        if not np.isfinite(medspec) or medspec == 0:
            # bail out the spectrum is insane
            # TODO make the logic clearer
            return None
        baddat = ~np.isfinite(spec + curivars)
        dicroicmask = (waves[s] > 4300) & (waves[s] < 4450)
        badmask = (masks[s][seqid] > 0)
        baderr = curivars <= 0
        badall = baddat | badmask | baderr | dicroicmask
        curivars[badall] = 1. / medspec**2 / large_error**2
        spec[badall] = medspec
        espec = 1. / curivars**.5
        if badall.all():
            logging.warning('The whole spectrum was masked...')
        else:
            goodespec = espec[~badall]
            goodespec_thresh = np.median(goodespec) * minerr_frac
            replace_idx = (espec < goodespec_thresh) & (~badall)
            if replace_idx.sum() / (~badall).sum() > .1:
                logging.warning(
                    'More than 10% of spectra had the uncertainty clamped')
            # logging.debug("Clamped error on %d pixels" % (replace_idx.sum()))
            espec[replace_idx] = goodespec_thresh

        sd = spec_fit.SpecData('desi_%s' % s,
                               waves[s],
                               spec,
                               espec,
                               badmask=badall)
        sds.append(sd)
    return sds
Example #5
0
def test_fits():
    config = utils.read_config(path + '/config.yaml')

    # read data
    dat = pyfits.getdata(path + '/data/spec-0266-51602-0031.fits')
    err = dat['ivar']
    err = 1. / err**.5
    err[~np.isfinite(err)] = 1e40

    # construct specdata object
    specdata = [
        spec_fit.SpecData('sdss1', 10**dat['loglam'], dat['flux'], err)
    ]
    rot_params = None
    resols_params = None

    params_list = [[4000, 3, -1, 0], [5000, 3, -1, 0], [6000, 2, -2, 0],
                   [5500, 5, 0, 0]]
    vel_grid = np.linspace(-600, 600, 1000)
    options = {'npoly': 10}

    t1 = time.time()
    res = spec_fit.find_best(specdata,
                             vel_grid,
                             params_list,
                             rot_params,
                             resols_params,
                             options=options,
                             config=config)
    t2 = time.time()
    bestv, bestpar, bestchi, vel_err = [
        res[_] for _ in ['best_vel', 'best_param', 'best_chi', 'vel_err']
    ]
    assert (np.abs(bestv - 15) < 15)
    param0 = vel_fit.firstguess(specdata, options=options, config=config)
    resfull = vel_fit.process(specdata,
                              param0,
                              resols_params,
                              options=options,
                              config=config)
    chisquare = np.mean(
        ((specdata[0].spec - resfull['yfit'][0]) / specdata[0].espec)**2)
    assert (chisquare < 1.2)
    assert (np.abs(resfull['vel'] - 6) < 10)
    rot_params = (300, )
    plt.clf()
    ret = spec_fit.get_chisq(specdata,
                             bestv,
                             bestpar,
                             rot_params,
                             resols_params,
                             options=options,
                             config=config,
                             full_output=True)
    plt.plot(specdata[0].lam, specdata[0].spec, 'k')
    plt.plot(specdata[0].lam, ret['models'][0], 'r')
    plt.savefig(path + '/plot_sdss_test1.png')

    # Test the fit with the resolution matrix
    rot_params = None
    resol_mat = spec_fit.construct_resol_mat(specdata[0].lam, 50)
    resols_params = {'sdss1': resol_mat}
    ret = spec_fit.get_chisq(specdata,
                             bestv,
                             bestpar,
                             rot_params,
                             resol_params=resols_params,
                             options=options,
                             config=config,
                             full_output=True)
    plt.clf()
    plt.plot(specdata[0].lam, specdata[0].spec, 'k')
    plt.plot(specdata[0].lam, ret['models'][0], 'r')
    plt.savefig(path + '/plot_sdss_test2.png')
    resol_mat = spec_fit.construct_resol_mat(specdata[0].lam, 50)
    specdata = [
        spec_fit.SpecData('sdss1',
                          10**dat['loglam'],
                          dat['flux'],
                          err,
                          resolution=resol_mat)
    ]

    ret = spec_fit.get_chisq(specdata,
                             bestv,
                             bestpar,
                             rot_params,
                             options=options,
                             config=config,
                             full_output=True)
    plt.clf()
    plt.plot(specdata[0].lam, specdata[0].spec, 'k')
    plt.plot(specdata[0].lam, ret['models'][0], 'r')
    plt.savefig(path + '/plot_sdss_test3.png')
    ret = spec_fit.get_chisq_continuum(specdata, options=options)
Example #6
0
def test_fit():
    config = utils.read_config(path + '/config.yaml')

    # read data
    dat = pyfits.getdata(path + '/data/spec-0266-51602-0031.fits')
    err = dat['ivar']
    err = 1. / err**.5
    err[~np.isfinite(err)] = 1e40

    # construct specdata object
    specdata = [
        spec_fit.SpecData('sdss1', 10**dat['loglam'], dat['flux'], err)
    ]
    options = {'npoly': 15}
    paramDict0 = {
        'logg': 2,
        'teff': 5000,
        'feh': -1,
        'alpha': 0.2,
        'vsini': 19
    }
    fixParam = ['vsini']

    paramDict0 = {
        'logg': 2,
        'teff': 5000,
        'feh': -1,
        'alpha': 0.2,
        'vsini': 19
    }
    fixParam = ['vsini']

    # fit with fixed vssini
    res = vel_fit.process(specdata,
                          paramDict0,
                          fixParam=fixParam,
                          config=config,
                          options=options)

    paramDict0 = {
        'logg': 2,
        'teff': 5000,
        'feh': -1,
        'alpha': 0.2,
        'vsini': 19
    }

    # fit witout fixin
    fixParam = []
    res = vel_fit.process(specdata,
                          paramDict0,
                          fixParam=fixParam,
                          config=config,
                          options=options)

    options = {'npoly': 15}

    # first guess fit
    xres0 = vel_fit.firstguess(specdata, config=config)

    # ccf
    res = fitter_ccf.fit(specdata, config)
    paramDict0 = res['best_par']
    fixParam = []
    if res['best_vsini'] is not None:
        paramDict0['vsini'] = res['best_vsini']
    res1 = vel_fit.process(specdata,
                           paramDict0,
                           fixParam=fixParam,
                           config=config,
                           options=options)
    print(res1)
    plt.figure(figsize=(6, 2), dpi=300)
    plt.plot(specdata[0].lam, specdata[0].spec, 'k-')
    plt.plot(specdata[0].lam, res1['yfit'][0], 'r-')
    plt.tight_layout()
    plt.savefig(path + '/plot_test_fit_sdss.png')

    # test priors
    res2 = vel_fit.process(specdata,
                           paramDict0,
                           fixParam=fixParam,
                           config=config,
                           options=options,
                           priors={'teff': (9000, 50)})
    # test rbf
    options['rbf_continuum'] = False
    res2 = vel_fit.process(specdata,
                           paramDict0,
                           fixParam=fixParam,
                           config=config,
                           options=options)
Example #7
0
                args.snr)]['spectrum_continuum_normalised']

            # Replace errors which are nans with a large value, otherwise they cause numerical failures in the RV code
            observed.value_errors[np.isnan(observed.value_errors)] = 1000.

            # Resample it onto a logarithmic raster of fixed step
            resampler = SpectrumResampler(observed)

            # Loop over each arm of this 4MOST mode in turn, populating a list of the observed spectra
            spectral_data = []
            for arm in arm_rasters[mode_lower]:
                observed_arm = resampler.onto_raster(arm['raster'])
                spectral_data.append(
                    spec_fit.SpecData(name=arm['name'],
                                      lam=arm['raster'],
                                      spec=observed_arm.values,
                                      espec=observed_arm.value_errors,
                                      badmask=None))

            # Debugging
            np.savetxt(
                "/tmp/debug_observed_{}.dat".format(run_id),
                np.transpose([
                    observed.wavelengths, observed.values,
                    observed.value_errors
                ]))

            for arm in arm_rasters[mode_lower]:
                np.savetxt(
                    "/tmp/debug_{}_{}.dat".format(arm['name'], run_id),
                    np.transpose([