def imred(rawdir, prodir, cleanup=True): print rawdir print prodir #get the name of the files infile_list=glob.glob(rawdir+'*.fits') infiles=','.join(['%s' % x for x in infile_list]) #get the current date for the files obsdate=os.path.basename(infile_list[0])[1:9] print obsdate #set up some files that will be needed logfile='imred'+obsdate+'.log' flatimage='FLAT%s.fits' % (obsdate) dbfile='spec%s.db' % obsdate #create the observation log obs_dict=obslog(infile_list) #prepare the data saltprepare(infiles, '', 'p', createvar=False, badpixelimage='', clobber=True, logfile=logfile, verbose=True) #bias subtract the data saltbias('pP*fits', '', 'b', subover=True, trim=True, subbias=False, masterbias='', median=False, function='polynomial', order=5, rej_lo=3.0, rej_hi=5.0, niter=10, plotover=False, turbo=False, clobber=True, logfile=logfile, verbose=True) #gain correct the data saltgain('bpP*fits', '', 'g', usedb=False, mult=True, clobber=True, logfile=logfile, verbose=True) #cross talk correct the data saltxtalk('gbpP*fits', '', 'x', xtalkfile = "", usedb=False, clobber=True, logfile=logfile, verbose=True) #cosmic ray clean the data #only clean the object data for i in range(len(infile_list)): if obs_dict['CCDTYPE'][i].count('OBJECT') and obs_dict['INSTRUME'][i].count('RSS'): img='xgbp'+os.path.basename(infile_list[i]) saltcrclean(img, img, '', crtype='edge', thresh=5, mbox=11, bthresh=5.0, flux_ratio=0.2, bbox=25, gain=1.0, rdnoise=5.0, fthresh=5.0, bfactor=2, gbox=3, maxiter=5, multithread=True, clobber=True, logfile=logfile, verbose=True) #flat field correct the data flat_imgs='' for i in range(len(infile_list)): if obs_dict['CCDTYPE'][i].count('FLAT'): if flat_imgs: flat_imgs += ',' flat_imgs += 'xgbp'+os.path.basename(infile_list[i]) if len(flat_imgs)!=0: saltcombine(flat_imgs,flatimage, method='median', reject=None, mask=False, \ weight=True, blank=0, scale='average', statsec='[200:300, 600:800]', lthresh=3, \ hthresh=3, clobber=True, logfile=logfile, verbose=True) #saltillum(flatimage, flatimage, '', mbox=11, clobber=True, logfile=logfile, verbose=True) saltflat('xgbpP*fits', '', 'f', flatimage, minflat=500, clobber=True, logfile=logfile, verbose=True) else: flats=None imfiles=glob.glob('xgbpP*fits') for f in imfiles: shutil.copy(f, 'f'+f) #mosaic the data geomfile=iraf.osfn("pysalt$data/rss/RSSgeom.dat") saltmosaic('fxgbpP*fits', '', 'm', geomfile, interp='linear', cleanup=True, geotran=True, clobber=True, logfile=logfile, verbose=True) #clean up the images if cleanup: for f in glob.glob('p*fits'): os.remove(f) for f in glob.glob('bp*fits'): os.remove(f) for f in glob.glob('gbp*fits'): os.remove(f) for f in glob.glob('xgbp*fits'): os.remove(f) for f in glob.glob('fxgbp*fits'): os.remove(f)
def quickclean(filename, interp='linear', cleanup=True, clobber=False, logfile='saltclean.log', verbose=True): """Start the process to reduce the data and produce a single mosaicked image""" print filename #create the input file name status=0 infile=os.path.basename(filename) rawpath=os.path.dirname(filename) outpath='./' outfile=outpath+'mbxp'+infile print infile, rawpath, outpath #check to see if it exists and return if clobber is no if os.path.isfile(outfile) and not clobber: return #set up the files needed if infile[0]=='P': gaindb = iraf.osfn('pysalt$data/rss/RSSamps.dat') xtalkfile = iraf.osfn('pysalt$data/rss/RSSxtalk.dat') geomfile = iraf.osfn('pysalt$data/rss/RSSgeom.dat') elif infile[0]=='S': gaindb = iraf.osfn('pysalt$data/scam/SALTICAMamps.dat') xtalkfile = iraf.osfn('pysalt$data/scam/SALTICAMxtalk.dat') geomfile = iraf.osfn('pysalt$data/scam/SALTICAMgeom.dat') #verify the file hdu=saltio.openfits(rawpath+'/'+infile) hdu.verify('exception') #check to see if detmode is there if not saltkey.found('DETMODE', hdu[0]): return #reduce the file saltred.saltprepare(images=filename,outimages='',outpref=outpath+'p', \ createvar=False, badpixelimage=None, clobber=clobber,logfile=logfile,verbose=verbose) pinfile=outpath+'p'+infile saltred.saltgain(pinfile, outimages=pinfile, outpref='', gaindb=gaindb,usedb=False, mult=True,clobber=True, logfile=logfile, verbose=verbose) saltred.saltxtalk(pinfile,outimages='',outpref='x',xtalkfile=xtalkfile,clobber=clobber, logfile=logfile,verbose=verbose) #saltred.saltslot(images=pinfile,outimages='',outpref=outpath+'bx',gaindb=gaindb, # xtalkfile=xtalkfile,clobber=clobber,logfile=logfile,verbose=verbose, # status=0) xinfile=outpath+'xp'+infile saltred.saltbias(images=xinfile,outimages='',outpref='b',subover=True,trim=True,subbias=False, masterbias='', median=False,function='polynomial',order=5,rej_lo=3,rej_hi=3,niter=10, plotover=False,turbo=False,logfile=logfile, clobber=clobber, verbose=verbose) biasfile=outpath+'bxp'+infile if hdu[0].header['CCDTYPE']=='OBJECT' and hdu[0].header['EXPTIME']>90: saltcrclean(images=biasfile, outimages=biasfile, outpref='', crtype='median',thresh=5,mbox=5, \ bthresh=3, flux_ratio=0.2, bbox=25, gain=1, rdnoise=5, fthresh=5,\ bfactor=2, gbox=0, maxiter=5, multithread=True, clobber=True, \ logfile='salt.log', verbose=True) saltred.saltmosaic(images=biasfile, outimages='',outpref=outpath+'m',geomfile=geomfile, interp=interp,cleanup=cleanup,clobber=clobber,logfile=logfile, verbose=verbose) profile=outpath+'mbxp'+infile #remove intermediate steps if cleanup: if os.path.isfile(pinfile): os.remove(pinfile) if os.path.isfile(xinfile): os.remove(xinfile) if os.path.isfile(biasfile): os.remove(biasfile) return
def imred(infile_list, prodir, bpmfile=None, gaindb = None, cleanup=True): #get the name of the files infiles=','.join(['%s' % x for x in infile_list]) #get the current date for the files obsdate=os.path.basename(infile_list[0])[1:9] print obsdate #set up some files that will be needed logfile='im'+obsdate+'.log' flatimage='FLAT%s.fits' % (obsdate) dbfile='spec%s.db' % obsdate #create the observation log obs_dict=obslog(infile_list) with logging(logfile, debug) as log: log.message('Pysalt Version: '+pysalt.verno, with_header=False) #prepare the data saltprepare(infiles, '', 'p', createvar=False, badpixelimage='', clobber=True, logfile=logfile, verbose=True) for img in infile_list: hdu = pyfits.open('p'+os.path.basename(img), 'update') # for backwards compatibility if not hdu[1].header.has_key('XTALK'): hdu[1].header.update('XTALK',1474) hdu[2].header.update('XTALK',1474) hdu[3].header.update('XTALK',1166) hdu[4].header.update('XTALK',1111) hdu[5].header.update('XTALK',1377) hdu[6].header.update('XTALK',1377) hdu.close() #bias subtract the data saltbias('pP*fits', '', 'b', subover=True, trim=True, subbias=False, masterbias='', median=False, function='polynomial', order=5, rej_lo=3.0, rej_hi=5.0, niter=10, plotover=False, turbo=False, clobber=True, logfile=logfile, verbose=True) add_variance('bpP*fits', bpmfile) #gain correct the data usedb = False if gaindb: usedb = True saltgain('bpP*fits', '', 'g', gaindb=gaindb, usedb=usedb, mult=True, clobber=True, logfile=logfile, verbose=True) #cross talk correct the data saltxtalk('gbpP*fits', '', 'x', xtalkfile = "", usedb=False, clobber=True, logfile=logfile, verbose=True) #cosmic ray clean the data #only clean the object data for i in range(len(infile_list)): if (obs_dict['CCDTYPE'][i].count('OBJECT') \ and obs_dict['LAMPID'][i].count('NONE') \ and obs_dict['INSTRUME'][i].count('RSS')): img='xgbp'+os.path.basename(infile_list[i]) saltcrclean(img, img, '', crtype='edge', thresh=5, mbox=11, bthresh=5.0, flux_ratio=0.2, bbox=25, gain=1.0, rdnoise=5.0, fthresh=5.0, bfactor=2, gbox=3, maxiter=5, multithread=True, clobber=True, logfile=logfile, verbose=True) #mosaic the data #khn: attempt to use most recent previous geometry to obsdate. #NOTE: mosaicing does not do this correctly #geomdb = open(datadir+"RSSgeom.dat",'r') #for geomline in geomdb: # if geomline[0]=='#': continue # if (int(obsdate) > int(geomline.split(' ')[0].replace('-',''))): break #geomfile = "RSSgeom_obsdate.dat" #open(geomfile,'w').write(geomline) geomfile=iraf.osfn("pysalt$data/rss/RSSgeom.dat") try: saltmosaic('xgbpP*fits', '', 'm', geomfile, interp='linear', cleanup=True, geotran=True, clobber=True, logfile=logfile, verbose=True) except: saltmosaic('xgbpP*fits', '', 'm', geomfile, interp='linear', cleanup=True, geotran=True, clobber=True, logfile=logfile, verbose=True) #khn: fix mosaiced VAR and BPM extensions #khn: fix mosaiced bpm missing some of gap for img in infile_list: filename = 'mxgbp'+os.path.basename(img) hdu = pyfits.open(filename, 'update') hdu[2].header.update('EXTNAME','VAR') hdu[3].header.update('EXTNAME','BPM') bpm_rc = (hdu[3].data>0).astype('uint8') zeroscicol = hdu['SCI'].data.sum(axis=0) == 0 bpmgapcol = bpm_rc.mean(axis=0) == 1 addbpmcol = zeroscicol & ~bpmgapcol addbpmcol[np.argmax(addbpmcol)-4:np.argmax(addbpmcol)] = True # allow for chip tilt bpm_rc[:,addbpmcol] = 1 hdu[3].data = bpm_rc hdu.writeto(filename,clobber=True) #clean up the images if cleanup: for f in glob.glob('p*fits'): os.remove(f) for f in glob.glob('bp*fits'): os.remove(f) for f in glob.glob('gbp*fits'): os.remove(f) for f in glob.glob('xgbp*fits'): os.remove(f)
def imred(rawdir, prodir, cleanup=True): print rawdir print prodir #get the name of the files infile_list = glob.glob(rawdir + '*.fits') infiles = ','.join(['%s' % x for x in infile_list]) #get the current date for the files obsdate = os.path.basename(infile_list[0])[1:9] print obsdate #set up some files that will be needed logfile = 'imred' + obsdate + '.log' flatimage = 'FLAT%s.fits' % (obsdate) dbfile = 'spec%s.db' % obsdate #create the observation log obs_dict = obslog(infile_list) #prepare the data saltprepare(infiles, '', 'p', createvar=False, badpixelimage='', clobber=True, logfile=logfile, verbose=True) #bias subtract the data saltbias('pP*fits', '', 'b', subover=True, trim=True, subbias=False, masterbias='', median=False, function='polynomial', order=5, rej_lo=3.0, rej_hi=5.0, niter=10, plotover=False, turbo=False, clobber=True, logfile=logfile, verbose=True) #gain correct the data saltgain('bpP*fits', '', 'g', usedb=False, mult=True, clobber=True, logfile=logfile, verbose=True) #cross talk correct the data saltxtalk('gbpP*fits', '', 'x', xtalkfile="", usedb=False, clobber=True, logfile=logfile, verbose=True) #cosmic ray clean the data #only clean the object data for i in range(len(infile_list)): if obs_dict['CCDTYPE'][i].count( 'OBJECT') and obs_dict['INSTRUME'][i].count('RSS'): img = 'xgbp' + os.path.basename(infile_list[i]) saltcrclean(img, img, '', crtype='edge', thresh=5, mbox=11, bthresh=5.0, flux_ratio=0.2, bbox=25, gain=1.0, rdnoise=5.0, fthresh=5.0, bfactor=2, gbox=3, maxiter=5, multithread=True, clobber=True, logfile=logfile, verbose=True) #flat field correct the data flat_imgs = '' for i in range(len(infile_list)): if obs_dict['CCDTYPE'][i].count('FLAT'): if flat_imgs: flat_imgs += ',' flat_imgs += 'xgbp' + os.path.basename(infile_list[i]) if len(flat_imgs) != 0: saltcombine(flat_imgs,flatimage, method='median', reject=None, mask=False, \ weight=True, blank=0, scale='average', statsec='[200:300, 600:800]', lthresh=3, \ hthresh=3, clobber=True, logfile=logfile, verbose=True) #saltillum(flatimage, flatimage, '', mbox=11, clobber=True, logfile=logfile, verbose=True) saltflat('xgbpP*fits', '', 'f', flatimage, minflat=500, clobber=True, logfile=logfile, verbose=True) else: flats = None imfiles = glob.glob('xgbpP*fits') for f in imfiles: shutil.copy(f, 'f' + f) #mosaic the data geomfile = iraf.osfn("pysalt$data/rss/RSSgeom.dat") saltmosaic('fxgbpP*fits', '', 'm', geomfile, interp='linear', cleanup=True, geotran=True, clobber=True, logfile=logfile, verbose=True) #clean up the images if cleanup: for f in glob.glob('p*fits'): os.remove(f) for f in glob.glob('bp*fits'): os.remove(f) for f in glob.glob('gbp*fits'): os.remove(f) for f in glob.glob('xgbp*fits'): os.remove(f) for f in glob.glob('fxgbp*fits'): os.remove(f)
def science_red(rawdir, prodir, imreduce=True, specreduce=True, bpmfile=None, calfile=None, lampfile='Ar', automethod='Matchlines', skysection=[800,1000], cleanup=True): print rawdir print prodir #get the name of the files infile_list=glob.glob(rawdir+'P*.fits') infiles=','.join(['%s' % x for x in infile_list]) #get the current date for the files obsdate=os.path.basename(infile_list[0])[1:9] print obsdate #set up some files that will be needed logfile='spec'+obsdate+'.log' flatimage='FLAT%s.fits' % (obsdate) dbfile='spec%s.db' % obsdate #create the observation log obs_dict=obslog(infile_list) if imreduce: #prepare the data saltprepare(infiles, '', 'p', createvar=False, badpixelimage='', clobber=True, logfile=logfile, verbose=True) #bias subtract the data saltbias('pP*fits', '', 'b', subover=True, trim=True, subbias=False, masterbias='', median=False, function='polynomial', order=5, rej_lo=3.0, rej_hi=5.0, niter=10, plotover=False, turbo=False, clobber=True, logfile=logfile, verbose=True) add_variance('bpP*fits', bpmfile) #gain correct the data saltgain('bpP*fits', '', 'g', usedb=False, mult=True, clobber=True, logfile=logfile, verbose=True) #cross talk correct the data saltxtalk('gbpP*fits', '', 'x', xtalkfile = "", usedb=False, clobber=True, logfile=logfile, verbose=True) #flat field correct the data flat_imgs='' for i in range(len(infile_list)): if obs_dict['CCDTYPE'][i].count('FLAT'): if flat_imgs: flat_imgs += ',' flat_imgs += 'xgbp'+os.path.basename(infile_list[i]) if 0: #len(flat_imgs)!=0: saltcombine(flat_imgs,flatimage, method='median', reject=None, mask=False, \ weight=False, blank=0, scale=None, statsec='[200:300, 600:800]', lthresh=3, \ hthresh=3, clobber=True, logfile=logfile, verbose=True) saltillum(flatimage, flatimage, '', mbox=11, clobber=True, logfile=logfile, verbose=True) saltflat('xgbpP*fits', '', 'f', flatimage, minflat=0.8, allext=False, clobber=True, logfile=logfile, verbose=True) else: flats=None imfiles=glob.glob('xgbpP*fits') for f in imfiles: shutil.copy(f, 'f'+f) #cosmic ray clean the data #only clean the object data for i in range(len(infile_list)): if obs_dict['CCDTYPE'][i].count('OBJECT') and obs_dict['INSTRUME'][i].count('RSS'): img='fxgbp'+os.path.basename(infile_list[i]) saltcrclean(img, img, '', crtype='edge', thresh=5, mbox=11, bthresh=5.0, flux_ratio=0.2, bbox=25, gain=1.0, rdnoise=5.0, fthresh=5.0, bfactor=2, gbox=3, maxiter=5, multithread=True, clobber=True, logfile=logfile, verbose=True) #mosaic the data geomfile=iraf.osfn("pysalt$data/rss/RSSgeom.dat") saltmosaic('fxgbpP*fits', '', 'm', geomfile, interp='linear', cleanup=True, geotran=True, clobber=True, logfile=logfile, verbose=True) #clean up the images if cleanup: for f in glob.glob('p*fits'): os.remove(f) for f in glob.glob('bp*fits'): os.remove(f) for f in glob.glob('gbp*fits'): os.remove(f) for f in glob.glob('xgbp*fits'): os.remove(f) for f in glob.glob('fxgbp*fits'): os.remove(f) #set up the name of the images if specreduce: for i in range(len(infile_list)): if obs_dict['OBJECT'][i].upper().strip()=='ARC': lamp=obs_dict['LAMPID'][i].strip().replace(' ', '') arcimage='mfxgbp'+os.path.basename(infile_list[i]) #lampfile=iraf.osfn("pysalt$data/linelists/%s.salt" % lamp) specidentify(arcimage, lampfile, dbfile, guesstype='rss', guessfile='', automethod=automethod, function='legendre', order=3, rstep=100, rstart='middlerow', mdiff=50, thresh=2, niter=5, smooth=3, inter=True, clobber=True, logfile=logfile, verbose=True) specrectify(arcimage, outimages='', outpref='x', solfile=dbfile, caltype='line', function='legendre', order=3, inttype='interp', w1=None, w2=None, dw=None, nw=None, blank=0.0, clobber=True, logfile=logfile, verbose=True) objimages='' for i in range(len(infile_list)): if obs_dict['CCDTYPE'][i].count('OBJECT') and obs_dict['INSTRUME'][i].count('RSS'): if objimages: objimages += ',' objimages+='mfxgbp'+os.path.basename(infile_list[i]) if specreduce: #run specidentify on the arc files specrectify(objimages, outimages='', outpref='x', solfile=dbfile, caltype='line', function='legendre', order=3, inttype='interp', w1=None, w2=None, dw=None, nw=None, blank=0.0, clobber=True, logfile=logfile, verbose=True) return
def specred(rawdir, prodir, imreduce=True, specreduce=True, calfile=None, lamp='Ar', automethod='Matchlines', skysection=[800,1000], cleanup=True): print rawdir print prodir #get the name of the files infile_list=glob.glob(rawdir+'*.fits') infiles=','.join(['%s' % x for x in infile_list]) #get the current date for the files obsdate=os.path.basename(infile_list[0])[1:9] print obsdate #set up some files that will be needed logfile='spec'+obsdate+'.log' flatimage='FLAT%s.fits' % (obsdate) dbfile='spec%s.db' % obsdate #create the observation log obs_dict=obslog(infile_list) if imreduce: #prepare the data saltprepare(infiles, '', 'p', createvar=False, badpixelimage='', clobber=True, logfile=logfile, verbose=True) #bias subtract the data saltbias('pP*fits', '', 'b', subover=True, trim=True, subbias=False, masterbias='', median=False, function='polynomial', order=5, rej_lo=3.0, rej_hi=5.0, niter=10, plotover=False, turbo=False, clobber=True, logfile=logfile, verbose=True) #gain correct the data saltgain('bpP*fits', '', 'g', usedb=False, mult=True, clobber=True, logfile=logfile, verbose=True) #cross talk correct the data saltxtalk('gbpP*fits', '', 'x', xtalkfile = "", usedb=False, clobber=True, logfile=logfile, verbose=True) #cosmic ray clean the data #only clean the object data for i in range(len(infile_list)): if obs_dict['CCDTYPE'][i].count('OBJECT') and obs_dict['INSTRUME'][i].count('RSS'): img='xgbp'+os.path.basename(infile_list[i]) saltcrclean(img, img, '', crtype='edge', thresh=5, mbox=11, bthresh=5.0, flux_ratio=0.2, bbox=25, gain=1.0, rdnoise=5.0, fthresh=5.0, bfactor=2, gbox=3, maxiter=5, multithread=True, clobber=True, logfile=logfile, verbose=True) #flat field correct the data flat_imgs='' for i in range(len(infile_list)): if obs_dict['CCDTYPE'][i].count('FLAT'): if flat_imgs: flat_imgs += ',' flat_imgs += 'xgbp'+os.path.basename(infile_list[i]) if len(flat_imgs)!=0: saltcombine(flat_imgs,flatimage, method='median', reject=None, mask=False, \ weight=True, blank=0, scale='average', statsec='[200:300, 600:800]', lthresh=3, \ hthresh=3, clobber=True, logfile=logfile, verbose=True) saltillum(flatimage, flatimage, '', mbox=11, clobber=True, logfile=logfile, verbose=True) saltflat('xgbpP*fits', '', 'f', flatimage, minflat=500, clobber=True, logfile=logfile, verbose=True) else: flats=None imfiles=glob.glob('cxgbpP*fits') for f in imfiles: shutil.copy(f, 'f'+f) #mosaic the data geomfile=iraf.osfn("pysalt$data/rss/RSSgeom.dat") saltmosaic('fxgbpP*fits', '', 'm', geomfile, interp='linear', cleanup=True, geotran=True, clobber=True, logfile=logfile, verbose=True) #clean up the images if cleanup: for f in glob.glob('p*fits'): os.remove(f) for f in glob.glob('bp*fits'): os.remove(f) for f in glob.glob('gbp*fits'): os.remove(f) for f in glob.glob('xgbp*fits'): os.remove(f) for f in glob.glob('fxgbp*fits'): os.remove(f) #set up the name of the images if specreduce: for i in range(len(infile_list)): if obs_dict['OBJECT'][i].upper().strip()=='ARC': lamp=obs_dict['LAMPID'][i].strip().replace(' ', '') arcimage='mfxgbp'+os.path.basename(infile_list[i]) lampfile=iraf.osfn("pysalt$data/linelists/%s.txt" % lamp) specidentify(arcimage, lampfile, dbfile, guesstype='rss', guessfile='', automethod=automethod, function='legendre', order=5, rstep=100, rstart='middlerow', mdiff=10, thresh=3, niter=5, inter=True, clobber=True, logfile=logfile, verbose=True) specrectify(arcimage, outimages='', outpref='x', solfile=dbfile, caltype='line', function='legendre', order=3, inttype='interp', w1=None, w2=None, dw=None, nw=None, blank=0.0, clobber=True, logfile=logfile, verbose=True) objimages='' for i in range(len(infile_list)): if obs_dict['CCDTYPE'][i].count('OBJECT') and obs_dict['INSTRUME'][i].count('RSS'): if objimages: objimages += ',' objimages+='mfxgbp'+os.path.basename(infile_list[i]) if specreduce: #run specidentify on the arc files specrectify(objimages, outimages='', outpref='x', solfile=dbfile, caltype='line', function='legendre', order=3, inttype='interp', w1=None, w2=None, dw=None, nw=None, blank=0.0, clobber=True, logfile=logfile, verbose=True) #create the spectra text files for all of our objects spec_list=[] for img in objimages.split(','): spec_list.extend(createspectra('x'+img, obsdate, smooth=False, skysection=skysection, clobber=True)) print spec_list #determine the spectrophotometric standard extfile=iraf.osfn('pysalt$data/site/suth_extinct.dat') for spec, am, et, pc in spec_list: if pc=='CAL_SPST': stdstar=spec.split('.')[0] print stdstar, am, et stdfile=iraf.osfn('pysalt$data/standards/spectroscopic/m%s.dat' % stdstar.lower().replace('-', '_')) print stdfile ofile=spec.replace('txt', 'sens') calfile=ofile #assumes only one observations of a SP standard specsens(spec, ofile, stdfile, extfile, airmass=am, exptime=et, stdzp=3.68e-20, function='polynomial', order=3, thresh=3, niter=5, clobber=True, logfile='salt.log',verbose=True) for spec, am, et, pc in spec_list: if pc!='CAL_SPST': ofile=spec.replace('txt', 'spec') speccal(spec, ofile, calfile, extfile, airmass=am, exptime=et, clobber=True, logfile='salt.log',verbose=True) #clean up the spectra for bad pixels cleanspectra(ofile)