obj(result.optimize_result.as_list('x')[0]['x'])) # calculate computation time comp_time = end - start # calculate converged points conv_points = compute_converged_points_single(result=result) print('converted points: ', conv_points) # SAVE STARTPOINTS _____________________________________________________________________________________________________ # calculate the startpoints startpoints = result.optimize_result.get_for_key('x0') # save the startpoints save_startpoints(result=result, path='startpoints/', file_name='logE_eps') # SAVE OPTIMIZATION RESULTS ____________________________________________________________________________________________ options = 'MODEL: Crauste model base, ' \ '\nSCALE: log(x + ' + str(eps) + ')' + \ '\nSTARTS: ' + str(n_starts) + \ '\nCONV POINTS: ' + str(conv_points) + \ '\nTIME: ' + str(comp_time) # specify path path = 'results_and_plots/optimization/logE_eps/' # file name is equal to starting points file_name = str(n_starts)
obj(result.optimize_result.as_list('x')[0]['x'])) # calculate computation time comp_time = end - start # calculate converged points conv_points = compute_converged_points_single(result=result) print('converted points: ', conv_points) # SAVE STARTPOINTS _____________________________________________________________________________________________________ # calculate the startpoints startpoints = result.optimize_result.get_for_key('x0') # save the startpoints save_startpoints(result=result, path='startpoints/', file_name='logicle5_1') # SAVE OPTIMIZATION RESULTS ____________________________________________________________________________________________ # options options = 'MODEL: Crauste model FULL, ' \ '\nSCALE: logicle(T=' + str(T) + ', end_lin=' + str(end_lin) + ')' +\ '\nSTARTS: ' + str(n_starts) + \ '\nCONV POINTS: ' + str(conv_points) + \ '\nTIME: ' + str(comp_time) # specify path path = 'results_and_plots/optimization/logicle5_1/' # file name is equal to starting points file_name = str(n_starts)
# calculate computation time comp_time = end - start # calculate converged points conv_points = compute_converged_points_single(result=result) print('converted points: ', conv_points) # SAVE STARTPOINTS _____________________________________________________________________________________________________ # calculate the startpoints startpoints = result.optimize_result.get_for_key('x0') # save the startpoints save_startpoints(result=result, path='startpoints/', file_name='linear') # import startpoints startpoints_import = import_startpoints('startpoints/linear') # SAVE OPTIMIZATION RESULTS ____________________________________________________________________________________________ # add options options = 'MODEL: caro model true, ' \ '\nSCALE: linear, ' \ '\nSTARTS: ' + str(n_starts) + \ '\nCONV POINTS: ' + str(conv_points) + \ '\nTIME: ' + str(comp_time) # specify path