(0.125,0, 0), (0.375,1, 1), (0.64,1, 1), (0.91,0,0), (1, 0, 0)), 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65,0, 0), (1, 0, 0))} # compute the properties for the circle collection min_count = min([min(cd.itervalues()) for cd in countdict.itervalues()]) max_count = max([max(cd.itervalues()) for cd in countdict.itervalues()]) size_scale = scale.linear(min_count,max_count).range(3,100) color_scale = lambda c: mpl.cm.jet(scale.log(min_count,max_count).range(0,0.85)(c)) xy = [] s = [] c = [] for (i,v_gene) in enumerate(uniq_feature_values['v']): for (j,j_gene) in enumerate(uniq_feature_values['j']): try: count = countdict[v_gene][j_gene] except KeyError: # count == 0 continue xy.append( (i,j) ) s.append(size_scale(count)) c.append(color_scale(count))
raise ValueError, "need input and output names" data = timeseries.load_timeseries(inhandle) matrix = data['matrix'] labels = np.asarray(data['labels']) times = data['times'] sums = data['sums'] streams = matrix / sums # determine colors for the streamgraph colors = [] time_idxs = np.arange(streams.shape[1]) onset_time = lambda stream: np.min(time_idxs[stream > 0]) weight = lambda stream: np.sum(stream) Hscale = scale.linear(range(len(times))).range(0,1-1./len(times)) Lscale = scale.root(streams.sum(axis=1)).range(0.8,0.5).power(4) for stream in streams: h = Hscale(onset_time(stream)) l = Lscale(weight(stream)) colors.append( colorsys.hls_to_rgb(h,l,1) + (1.,) ) colors = np.array(colors) # sort streamgraphs appropriately argsort_onset = streamgraph.argsort_onset(streams) streams = streams[argsort_onset] matrix = matrix[argsort_onset] colors = colors[argsort_onset] # argsort_inside_out = streamgraph.argsort_inside_out(streams) # streams = streams[argsort_inside_out]
features, count=options.quantify) _jet_data = { 'red': ((0., 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89, 1, 1), (1, 0.5, 0.5)), 'green': ((0., 0, 0), (0.125, 0, 0), (0.375, 1, 1), (0.64, 1, 1), (0.91, 0, 0), (1, 0, 0)), 'blue': ((0., 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65, 0, 0), (1, 0, 0)) } # compute the properties for the circle collection min_count = min([min(cd.itervalues()) for cd in countdict.itervalues()]) max_count = max([max(cd.itervalues()) for cd in countdict.itervalues()]) size_scale = scale.linear(min_count, max_count).range(3, 100) color_scale = lambda c: mpl.cm.jet( scale.log(min_count, max_count).range(0, 0.85)(c)) xy = [] s = [] c = [] for (i, v_gene) in enumerate(uniq_feature_values['v']): for (j, j_gene) in enumerate(uniq_feature_values['j']): try: count = countdict[v_gene][j_gene] except KeyError: # count == 0 continue xy.append((i, j)) s.append(size_scale(count))