Example #1
0
def old_asymptotic_series(a, b, z, maxiters=500, tol=tol):
    """Compute hyp1f1 using an asymptotic series. This uses DLMF 13.7.2
    and DLMF 13.2.4. Note that the series is divergent (as one would
    expect); this can be seen by the ratio test.

    """
    # S1 is the first sum; the ith term is
    # (1 - a)_i * (b - a)_i * z^(-s) / i!
    # S2 is the second sum; the ith term is
    # (a)_i * (a - b + 1)_i * (-z)^(-s) / i!
    A1 = 1
    S1 = A1
    A2 = 1
    S2 = A2
    # Is 8 terms optimal? Not sure.
    for i in range(1, 9):
        A1 = A1*(i - a)*(b - a + i - 1) / (z*i)
        S1 += A1
        A2 = -A2*(a + i - 1)*(a - b + i) / (z*i)
        S2 += A2

    phi = np.angle(z)
    if np.imag(z) == 0:
        expfac = np.cos(pi*a)
    elif phi > -0.5*pi and phi < 1.5*pi:
        expfac = np.exp(1J*pi*a)
    elif phi > -1.5*pi and phi <= -0.5*pi:
        expfac = np.exp(-1J*pi*a)
    else:
        raise Exception("Shouldn't be able to get here!")

    c1 = np.exp(z)*z**(a - b)*rgamma(a)
    c2 = expfac*z**(-a)*rgamma(b - a)
    return gamma(b)*(c1*S1 + c2*S2)
Example #2
0
def b_forward_recurrence(a, b, z, w0, N, tol, maxiter=500):
    """Use the recurrence relation (3.14) from _[pop] to compute hyp1f1(a,
    b + N, z) given w0 = hyp1f1(a, b, z).

    The minimal solution is gamma(b - a)*hyp1f1(a, b, z)/gamma(b),
    so we use Olver's algorithm. Here we follow the notation from the
    DLMF 3.6.

    """
    # TODO: use the log of gamma to prevent blowup
    w0 *= gamma(b - a)*rgamma(b)
    p, e = [0, 1], [w0]
    curmin, n = 1e100, 1
    # Forward substitution
    while True:
        an, bn, cn = 1, -(1 - b - n - z)/z, (b - a + n - 1)/z
        p.append((bn*p[-1] - cn*p[-2])/an)
        e.append(cn*e[-1]/an)
        testmin = abs(e[-1]/(p[-2]*p[-1]))
        if n <= N:
            if testmin < curmin:
                curmin = testmin
        else:
            if testmin <= tol*curmin or n - N > maxiter:
                break
        n += 1
    # Back substitution
    wn = 0
    for i in range(n, N, -1):
        wn = (p[i-1]*wn + e[i-1])/p[i]
    return rgamma(b + N - a)*gamma(b + N)*wn
Example #3
0
    def __calculate_single_term_cst_alpha__(self, t, i, alpha):
        i_alpha = i * alpha
        if i_alpha.is_integer():
            return len(t) * [0]
        else:
            sign = (-1)**i
            i_fact = math.factorial(i)

            def catch(func,
                      func_hp,
                      *args,
                      exceptions=Exception,
                      filter_name='error',
                      **kwargs):
                with warnings.catch_warnings():
                    warnings.filterwarnings(filter_name)
                    try:
                        res = func(*args, **kwargs)
                        if res is None:
                            raise exceptions
                        else:
                            return res
                    except exceptions:
                        return func_hp(*args, **kwargs)

            def L_ai_func():
                try:
                    i_fact_recip = i_fact**(-1)
                    L_i_alpha = self.L**i_alpha
                    return sign * L_i_alpha * i_fact_recip
                except:
                    return

            def L_ai_hp_func():
                return fdiv(sign * power(self.L, i_alpha), i_fact)

            L_ai = catch(L_ai_func, L_ai_hp_func, exceptions=OverflowError)
            rec_gamma = rgamma(-i_alpha) if math.isinf(
                sc.rgamma(-i_alpha)) else sc.rgamma(-i_alpha)
            const = L_ai * rec_gamma

            def single_term_func(ti):
                if const < sys.float_info.max:
                    return ti**(-i_alpha - 1) * const
                else:
                    return fmul(ti**(-i_alpha - 1), const)

            def single_term_hp_func(ti):
                return fmul(power(ti, (-i_alpha - 1)), const)

            single_term = [
                catch(single_term_func, single_term_hp_func, time)
                for time in t
            ]

            return single_term
Example #4
0
def asymptotic_series_full(a, b, z, maxterms=200):
    """Compute hyp1f1 using an asymptotic series. This uses DLMF 13.7.2
    and DLMF 13.2.4. Note that the series is divergent (as one would
    expect); this can be seen by the ratio test.

    In this implementation, the asymptotic series is summed "to the hilt":
    terms are added until they have no effect on the final result.

    """
    if np.real(z) < 0 and np.imag(z) == 0:
        # The series is not valid on the negative real axis.
        return np.nan

    phi = np.angle(z)
    if np.imag(z) == 0:
        expfac = np.cos(pi*a)
    elif phi > -0.5*pi and phi < 1.5*pi:
        expfac = np.exp(1J*pi*a)
    elif phi > -1.5*pi and phi <= -0.5*pi:
        expfac = np.exp(-1J*pi*a)
    else:
        raise Exception("Shouldn't be able to get here!")

    if (a > 0 and z > 0) or (a < 0 and z < 0):
        # rgamma is a small number when a > 0 and a large number
        # when a < 0.  Multipling in this order makes overflow less likely.
        c1 = (rgamma(a)*np.exp(z))*z**(a - b)
    else:
        c1 = (np.exp(z)*rgamma(a))*z**(a - b)

    c2 = expfac*z**(-a)*rgamma(b - a)
    
    # S1 is the first sum; the ith term is
    # (1 - a)_i * (b - a)_i * z^(-s) / i!
    # S2 is the second sum; the ith term is
    # (a)_i * (a - b + 1)_i * (-z)^(-s) / i!
    A1 = 1
    S1 = A1
    A2 = 1
    S2 = A2
    for i in range(1, maxterms + 1):
        A1 = A1*(i - a)*(b - a + i - 1) / (z*i)
        A2 = -A2*(a + i - 1)*(a - b + i) / (z*i)
        current_sum = c1*S1 + c2*S2
        if c1*(S1 + A1) + c2*(S2 + A2) == current_sum or not np.isfinite(current_sum):
            break
        S1 += A1
        S2 += A2

    return gamma(b)*(c1*S1 + c2*S2)
Example #5
0
def randFunc(x, sdev):

    functions = [
        np.sin(x),
        np.cos(x),
        special.gammaln(x),
        np.sqrt(x),
        np.log(x),
        np.log10(x),
        special.erf(x),
        np.square(x),
        special.struve(np.random.uniform(0, 2), x),
        special.rgamma(x)
    ]

    index = np.random.randint(0, int(len(functions)))

    choice = functions[index] / max(functions[index])
    choice = (choice**2)**0.5
    choice *= np.random.uniform(0, 150)
    choice += 10

    for k in range(len(x)):
        devSN = np.random.normal(0, sdev)
        choice[k] += devSN

    return (choice)
Example #6
0
def asymptotic_series_muller(a, b, z, maxiters=500, tol=tol):
    """The asymptotic series for real argument given by Muller (2001) as
    Method 2.

    """
    A1 = 1
    S1 = 1
    if z > 0:
        for i in xrange(1, 9):
            A1 = A1*(b - a + i - 1)*(i - a) / (z*i)
            S1 += A1
        return np.exp(z)*gamma(b)*z**(a-b)*rgamma(a)*S1
    elif z < 0:
        for i in xrange(1, 9):
            A1 = A1*(a - b + i)*(a + i - 1) / ((-z)*i)
            S1 += A1
        return gamma(b)*(-z)**a*rgamma(b - a)*S1
    else:
        # At z == 0 an asymptotic series makes no sense.
        return taylor_series(a, b, z)
Example #7
0
	def caputoEuler(self, a, f, y0, tspan):
		"""Use one-step Adams-Bashforth (Euler) method to integrate Caputo equation
		D^a y(t) = f(y,t)

		Args:
		a: fractional exponent in the range (0,1)
		f: callable(y,t) returning a numpy array of shape (d,)
			Vector-valued function to define the right hand side of the system
		y0: array of shape (d,) giving the initial state vector y(t==0)
		tspan (array): The sequence of time points for which to solve for y.
			These must be equally spaced, e.g. np.arange(0,10,0.005)
			tspan[0] is the intial time corresponding to the initial state y0.

		Returns:
		y: array, with shape (len(tspan), len(y0))
			With the initial value y0 in the first row

		See also:
		K. Diethelm et al. (2004) Detailed error analysis for a fractional Adams
		method
		C. Li and F. Zeng (2012) Finite Difference Methods for Fractional
		Differential Equations
		"""
		d = len(y0)
		N = len(tspan)
		h = (tspan[N-1] - tspan[0])/(N - 1)
		if a<1:
			c = special.rgamma(a) * np.power(h, a) / a
			w = c * np.diff(np.power(np.arange(N), a))
			fhistory = np.zeros((N - 1, d), dtype=type(y0[0]))
			y = np.zeros((N, d), dtype=type(y0[0]))
			y[0] = y0
			for n in range(0, N - 1):
				tn = tspan[n]
				yn = y[n]
				fhistory[n] = f(tn, yn)
				y[n+1] = y0 + np.dot(w[0:n+1], fhistory[n::-1])
			return y
		elif a>1: # Sun and Wu 2006
			cc = special.gamma(3-a)*np.power(h,a)
			bb = np.diff(np.power(np.arange(N), 2-a))
			fhistory = np.zeros((N - 1, d), dtype=type(y0[0]))
			y = np.zeros((N, d), dtype=type(y0[0]))
			y[0] = y0
			for n in range(0, N - 1):
				tn = tspan[n]
				yn = y[n]
				fhistory[n] = f(tn, yn)
				y[n + 1] = y[n] + cc*fhistory[n] 
				if n>1:
					y[n + 1] += np.dot( bb[:n-1] - bb[1:n], (y[1:n]-y[0:n-1])[::-1] )
			return y 
Example #8
0
def dvol(n,d):
    analytic=np.pi**(float(d)/2.)*rgamma(float(d)/2.+1)
    count = 0
    Narea=[]
    x=np.zeros(d)
    for j in xrange(n):
        #sample x_i from -1 to 1
        for i in xrange(d):
            x[i]=2.* random.random()-1.
        if (x*x).sum()<=1:
            count += 1.
        #only add the result if it is inside the cicle
        if j%100 ==0 and j!=0:
            Narea.append(np.abs(2**(d)*float(count)/float(j)-analytic))
    
    return Narea
Example #9
0
def gaussvol(n,d,sigma):
    analytic=np.pi**(float(d)/2.)*rgamma(float(d)/2.+1)
    count = 0
    Narea=[]
    x=np.zeros(d)
    for j in xrange(n):
        random.seed()
        #sample x_i from -1 to 1
        for i in xrange(d):
            x[i]=random.gauss(0,sigma)
        
        
        if (x*x).sum()<=1:
            # Here we use importance sampling to weight the result
            count += np.sqrt(2*np.pi*sigma**2)**(d)*np.exp((x*x).sum()/(2.*sigma**2))
        #only add the result if it is inside the cicle
        if j%100 ==0 and j!=0:
            Narea.append(np.abs(float(count)/float(j)-analytic))
    
    return Narea
Example #10
0
def test_wright_bessel_zero(a, b):
    """Test at x = 0."""
    assert_equal(wright_bessel(a, b, 0.), rgamma(b))
Example #11
0
 def test_rgamma_zeros(self):
     x = np.array([0, -10, -100, -1000, -10000])
     assert np.all(sc.rgamma(x) == 0)
Example #12
0
 def test_gh_11315(self):
     assert sc.rgamma(-35) == 0
Example #13
0
    def compute_f(self):

        ncomp = ((self.L * 2)**2) * 2
        terms = np.zeros(ncomp, dtype=self.dtype)

        extent = self.domain.extent
        ivolume = 1./(extent[0]*extent[1]*extent[2])

        gx = np.array((1./extent[0], 0., 0.))
        gy = np.array((0., 1./extent[1], 0.))
        gz = np.array((0., 0., 1./extent[2]))

        gxl = np.linalg.norm(gx)
        gyl = np.linalg.norm(gy)
        gzl = np.linalg.norm(gz)

        for lx in range(2, self.L*2, 2):

            rc, vc = self._compute_parameters(lx)
            kappa = self.kappa

            kappa2 = kappa * kappa
            mpi2okappa2 = -1.0 * (math.pi ** 2.) / kappa2

            ll = 6
            if int(ceil(vc/gxl)) < ll:
                vc = gxl*ll

            nmax = int(ceil(vc/gxl))
            #nmax = 1

            for hxi in itertools.product(range(- 1*nmax, nmax+1),
                                          range(-1*nmax, nmax+1),
                                          range(-1*nmax, nmax+1)):

                hx = hxi[0]*gz + hxi[1]*gy + hxi[2]*gx
                dispt = self._cart_to_sph(hx)

                if 10.**-10 < dispt[0] <= vc:

                    exp_coeff = math.exp(mpi2okappa2 * dispt[0] * dispt[0])

                    #mval = list(range(0, lx+1, 2))
                    mval = list(range(-1*lx, lx+1, 2))
                    mxval = [abs(mx) for mx in mval]
                    scipy_p = lpmv(mxval, lx, math.cos(dispt[2]))

                    vhnm2 = ((dispt[0] ** (lx - 2.)) * ((0 + 1.j) ** lx) * \
                            (math.pi ** (lx - 0.5))).real

                    coeff = vhnm2 * exp_coeff

                    for mxi, mx in enumerate(mval):

                        val = math.sqrt(float(math.factorial(
                            lx - abs(mx)))/math.factorial(lx + abs(mx)))
                        re_exp = np.cos(mx * dispt[1]) * val

                        assert abs(scipy_p[mxi].imag) < 10.**-16
                        sph_nm = re_exp * scipy_p[mxi].real

                        contrib = sph_nm * coeff
                        terms[self.re_lm(lx, mx)] += contrib.real


        for lx in range(2, self.L*2, 2):
            igamma = rgamma(lx + 0.5) * ivolume
            for mx in range(-1*lx, lx+1, 2):
                terms[self.re_lm(lx, mx)] *= igamma

        return terms
Example #14
0
import numpy as np
from scipy import special
from matplotlib import pyplot as plt


tempDM = np.linspace(0.001, 10, 10000)      # X-vals to evaluate the distributions over
    
functions = np.array([      # Possible distributions that noise can follow
            special.gammaln(tempDM), np.sqrt(tempDM), np.log(tempDM),
            -special.gammaln(tempDM), -np.sqrt(tempDM), -np.log(tempDM),
            special.erf(tempDM), np.square(tempDM),
            -special.erf(tempDM), -np.square(tempDM),
            special.struve(0,tempDM), special.struve(1,tempDM), special.struve(2,tempDM),
            -special.struve(0,tempDM), -special.struve(1,tempDM), -special.struve(2,tempDM),
            [np.random.uniform(0, 5)]*len(tempDM), tempDM, -tempDM, special.rgamma(tempDM)
            ])


def generation(numPoints, upperDM):
    """Randomly pick shapes for noise to follow. With probability of multiple, different,
    distributions (as well as their inverted counterparts) to be convolved with each other and
    form unpredictable shapes.

    Keyword arguments:
    numPoints -- the number of points that the noise/fake signal will have
    upperDM -- the highest DM for the data (w.r.t. 0), to be multiplied by the normalised plot in the end
    """
    
    np.random.seed()    # As random seeds are used at some points this just ensure it is reset every time
    
    convProb = 3/4      # Probability of convolution of a signal taking place
Example #15
0
    def __calculate_single_term_var_alpha__(self, t, i, alpha):
        i_alpha = [i * a for a in alpha]
        sign = (-1)**i
        i_fact = math.factorial(i)

        def catch(func,
                  func_hp,
                  *args,
                  exceptions=Exception,
                  filter_name='error',
                  **kwargs):
            with warnings.catch_warnings():
                warnings.filterwarnings(filter_name)
                try:
                    res = func(*args, **kwargs)
                    if res is None:
                        raise exceptions
                    else:
                        return res
                except exceptions:
                    return func_hp(*args, **kwargs)

        def L_ai_func(ia):
            try:
                i_fact_recip = i_fact**(-1)
                L_i_alpha = self.L**ia
                return sign * L_i_alpha * i_fact_recip
            except:
                return

        def L_ai_hp_func(ia):
            return fdiv(sign * power(self.L, ia), i_fact)

        L_ai = [
            0 if ia.is_integer() else catch(L_ai_func,
                                            L_ai_hp_func,
                                            ia,
                                            exceptions=(OverflowError,
                                                        Exception))
            for ia in i_alpha
        ]
        rec_gamma = [
            1 if ia.is_integer() else
            rgamma(-ia) if math.isinf(sc.rgamma(-ia)) else sc.rgamma(-ia)
            for ia in i_alpha
        ]
        const = [Lai * rec_g for Lai, rec_g in zip(L_ai, rec_gamma)]

        def single_term_func(ti, ia, c):
            if c < sys.float_info.max:
                return ti**(-ia - 1) * c
            else:
                return fmul(ti**(-ia - 1), c)

        def single_term_hp_func(ti, ia, c):
            return fmul(power(ti, (-ia - 1)), c)

        single_term = [
            0 if ia.is_integer() else catch(single_term_func,
                                            single_term_hp_func, time, ia, c)
            for time, ia, c in zip(t, i_alpha, const)
        ]
        return single_term