from segmentation_models import get_preprocessing from segmentation_models.losses import bce_jaccard_loss from segmentation_models.metrics import iou_score from tensorflow.keras.datasets import mnist BACKBONE = 'resnet34' preprocess_input = get_preprocessing(BACKBONE) # load your data (x_train, y_train),( x_val, y_val) = mnist.load_data() # preprocess input x_train = preprocess_input(x_train) x_val = preprocess_input(x_val) # define model model = FPN(BACKBONE, input_shape=(224, 224, 6),classes=9, encoder_weights=None) model.compile('Adam', loss=bce_jaccard_loss, metrics=[iou_score]) # fit model model.fit( x=x_train, y=y_train, batch_size=16, epochs=100, validation_data=(x_val, y_val), )
pyramid_dropout=None, ) image = np.load("./data/image.npy") label = np.load("./data/label.npy") model.compile( loss=lambda labels, predictions: tf.keras.losses.binary_crossentropy( labels[:, :, :, 1:], predictions ), optimizer="adam", metrics=["accuracy"], ) model.fit( [image], [label], batch_size=1, epochs=300, verbose=2, callbacks=[ tf.keras.callbacks.ModelCheckpoint( filepath="./dist/keras/psenet", save_weights_only=True ) ], ) kernels = model.predict(image) plt.figure() plt.imshow(np.squeeze(kernels[:, :, :, 0])) plt.savefig("./docs/training-with-pure-keras.png")