def run_autocorr(sessions, analysis, analyspar, sesspar, stimpar, autocorrpar, figpar, datatype="roi"): """ run_autocorr(sessions, analysis, analyspar, sesspar, stimpar, autocorrpar, figpar) Calculates and plots autocorrelation during stimulus blocks. Saves results and parameters relevant to analysis in a dictionary. Required args: - sessions (list) : list of Session objects - analysis (str) : analysis type (e.g., "a") - analyspar (AnalysPar) : named tuple containing analysis parameters - sesspar (SessPar) : named tuple containing session parameters - stimpar (StimPar) : named tuple containing stimulus parameters - autocorrpar (AutocorrPar): named tuple containing autocorrelation analysis parameters - figpar (dict) : dictionary containing figure parameters Optional args: - datatype (str): type of data (e.g., "roi", "run") """ sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype, sesspar.plane, stimpar.visflow_dir, stimpar.visflow_size, stimpar.gabk, "print") dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane, datatype, "print") datastr = sess_str_util.datatype_par_str(datatype) logger.info( f"Analysing and plotting {datastr} autocorrelations " f"({sessstr_pr}{dendstr_pr}).", extra={"spacing": "\n"}) xrans = [] stats = [] for sess in sessions: if datatype == "roi" and (sess.only_tracked_rois != analyspar.tracked): raise RuntimeError( "sess.only_tracked_rois should match analyspar.tracked.") stim = sess.get_stim(stimpar.stimtype) all_segs = stim.get_segs_by_criteria(visflow_dir=stimpar.visflow_dir, visflow_size=stimpar.visflow_size, gabk=stimpar.gabk, by="block") sess_traces = [] for segs in all_segs: if len(segs) == 0: continue segs = sorted(segs) # check that segs are contiguous if max(np.diff(segs)) > 1: raise NotImplementedError("Segments used for autocorrelation " "must be contiguous within blocks.") if datatype == "roi": frame_edges = stim.get_fr_by_seg( [min(segs), max(segs)], fr_type="twop") fr = list(range(min(frame_edges[0]), max(frame_edges[1]) + 1)) traces = gen_util.reshape_df_data(sess.get_roi_traces( fr, fluor=analyspar.fluor, rem_bad=analyspar.rem_bad, scale=analyspar.scale), squeeze_cols=True) elif datatype == "run": if autocorrpar.byitem != False: raise ValueError("autocorrpar.byitem must be False for " "running data.") frame_edges = stim.get_fr_by_seg( [min(segs), max(segs)], fr_type="stim") fr = list(range(min(frame_edges[0]), max(frame_edges[1]) + 1)) traces = sess.get_run_velocity_by_fr( fr, fr_type="stim", rem_bad=analyspar.rem_bad, scale=analyspar.scale).to_numpy().reshape(1, -1) sess_traces.append(traces) # Calculate autocorr stats while filtering some warnings msgs = ["Degrees of freedom", "invalid value encountered"] categs = [RuntimeWarning, RuntimeWarning] with gen_util.TempWarningFilter(msgs, categs): xran, ac_st = math_util.autocorr_stats(sess_traces, autocorrpar.lag_s, sess.twop_fps, byitem=autocorrpar.byitem, stats=analyspar.stats, error=analyspar.error) if not autocorrpar.byitem: # also add a 10x lag lag_fr = 10 * int(autocorrpar.lag_s * sess.twop_fps) _, ac_st_10x = math_util.autocorr_stats(sess_traces, lag_fr, byitem=autocorrpar.byitem, stats=analyspar.stats, error=analyspar.error) downsamp = range(0, ac_st_10x.shape[-1], 10) if len(downsamp) != ac_st.shape[-1]: raise RuntimeError("Failed to downsample correctly. " "Check implementation.") ac_st = np.stack([ac_st, ac_st_10x[:, downsamp]], axis=1) xrans.append(xran) stats.append(ac_st) autocorr_data = { "xrans": [xran.tolist() for xran in xrans], "stats": [stat.tolist() for stat in stats] } sess_info = sess_gen_util.get_sess_info(sessions, analyspar.fluor, incl_roi=(datatype == "roi"), rem_bad=analyspar.rem_bad) extrapar = { "analysis": analysis, "datatype": datatype, } info = { "analyspar": analyspar._asdict(), "sesspar": sesspar._asdict(), "stimpar": stimpar._asdict(), "extrapar": extrapar, "autocorrpar": autocorrpar._asdict(), "autocorr_data": autocorr_data, "sess_info": sess_info } fulldir, savename = gen_plots.plot_autocorr(figpar=figpar, **info) file_util.saveinfo(info, savename, fulldir, "json")
def run_trace_corr_acr_sess(sessions, analysis, analyspar, sesspar, stimpar, figpar, datatype="roi"): """ run_trace_corr_acr_sess(sessions, analysis, analyspar, sesspar, stimpar, quantpar, figpar) Retrieves trace statistics by session x unexp val and calculates correlations across sessions per unexp val. Currently only logs results to the console. Does NOT save results and parameters relevant to analysis in a dictionary. Required args: - sessions (list) : list of Session objects - analysis (str) : analysis type (e.g., "r") - analyspar (AnalysPar): named tuple containing analysis parameters - sesspar (SessPar) : named tuple containing session parameters - stimpar (StimPar) : named tuple containing stimulus parameters - figpar (dict) : dictionary containing figure parameters Optional args: - datatype (str): type of data (e.g., "roi", "run") """ sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype, sesspar.plane, stimpar.visflow_dir, stimpar.visflow_size, stimpar.gabk, "print") # dendstr_pr = sess_str_util.dend_par_str( # analyspar.dend, sesspar.plane, datatype, "print") datastr = sess_str_util.datatype_par_str(datatype) if sesspar.plane in ["any", "all"] and sesspar.runtype == "pilot": logger.warning("Planes may not match between sessions for a mouse!") logger.info( "Analysing and plotting correlations between unexpected vs " f"expected {datastr} traces between sessions ({sessstr_pr}).", extra={"spacing": "\n"}) figpar = copy.deepcopy(figpar) if figpar["save"]["use_dt"] is None: figpar["save"]["use_dt"] = gen_util.create_time_str() prev_level = logger.level if prev_level > logging.INFO: logger.setLevel(logging.INFO) logger.warning("Temporarily lowered log level for correlation " "analysis results.") unexps = ["exp", "unexp"] # correlate average traces between sessions for each mouse and each # unexpected value all_counts = [] all_me_tr = [] all_corrs = [] logger.info("Intramouse correlations", extra={"spacing": "\n"}) for sess_grp in sessions: logger.info(f"Mouse {sess_grp[0].mouse_n}, sess {sess_grp[0].sess_n} " f"vs {sess_grp[1].sess_n} corr:") trace_info = quant_analys.trace_stats_by_qu_sess(sess_grp, analyspar, stimpar, 1, [0], byroi=False, by_exp=True, datatype=datatype) # remove quant dim grp_stats = np.asarray(trace_info[1]).squeeze(2) all_counts.append([[qu_c[0] for qu_c in c] for c in trace_info[2]]) # get mean/median per grp (sess x unexp_val x frame) grp_me = grp_stats[:, :, 0] grp_corrs = [] # collect correlations corrs = [ st.pearsonr(grp_me[0, s], grp_me[1, s]) for s in range(len(unexps)) ] corr_max = np.argmax([corr[0] for corr in corrs]) for s, (unexp, corr) in enumerate(zip(unexps, corrs)): sig_str = "*" if corr[1] < 0.05 else "" high_str = " +" if corr_max == s else "" logger.info( f"{unexp}: {corr[0]:.4f} " f"(p={corr[1]:.2f}{sig_str}){high_str}", extra={"spacing": TAB}) corr = corr[0] grp_corrs.append(corr) all_corrs.append(grp_corrs) all_me_tr.append(grp_me) # mice x sess x unexp x frame all_me_tr = np.asarray(all_me_tr) logger.info("Intermouse correlations", extra={"spacing": "\n"}) all_mouse_corrs = [] for n, m1_sess_mes in enumerate(all_me_tr): if n + 1 < len(all_me_tr): mouse_corrs = [] for n_add, m2_sess_mes in enumerate(all_me_tr[n + 1:]): sess_corrs = [] logger.info(f"Mouse {sessions[n][0].mouse_n} vs " f"{sessions[n + 1 + n_add][0].mouse_n} corr:") for se, m1_s1_me in enumerate(m1_sess_mes): unexp_corrs = [] logger.info(f"sess {sessions[n][se].sess_n}:", extra={"spacing": TAB}) # collect correlations corrs = [ st.pearsonr(m1_s1_me[s], m2_sess_mes[se][s]) for s in range(len(unexps)) ] corr_max = np.argmax([corr[0] for corr in corrs]) for s, (unexp, corr) in enumerate(zip(unexps, corrs)): sig_str = "*" if corr[1] < 0.05 else "" high_str = " +" if corr_max == s else "" logger.info( f"{unexp}: {corr[0]:.4f} " f"(p={corr[1]:.2f}{sig_str}){high_str}", extra={"spacing": f"{TAB}{TAB}"}) corr = corr[0] unexp_corrs.append(corr) sess_corrs.append(unexp_corrs) mouse_corrs.append(sess_corrs) all_mouse_corrs.append(mouse_corrs) # reset logger level logger.setLevel(prev_level)
def run_traces_by_qu_lock_sess(sessions, analysis, seed, analyspar, sesspar, stimpar, quantpar, figpar, datatype="roi"): """ run_traces_by_qu_lock_sess(sessions, analysis, analyspar, sesspar, stimpar, quantpar, figpar) Retrieves trace statistics by session x quantile at the transition of expected to unexpected sequences (or v.v.) and plots traces across ROIs by quantile with each session in a separate subplot. Also runs analysis for one quantile (full data) with different unexpected lengths grouped separated Saves results and parameters relevant to analysis in a dictionary. Required args: - sessions (list) : list of Session objects - analysis (str) : analysis type (e.g., "l") - seed (int) : seed value to use. (-1 treated as None) - analyspar (AnalysPar): named tuple containing analysis parameters - sesspar (SessPar) : named tuple containing session parameters - stimpar (StimPar) : named tuple containing stimulus parameters - quantpar (QuantPar) : named tuple containing quantile analysis parameters - figpar (dict) : dictionary containing figure parameters Optional args: - datatype (str): type of data (e.g., "roi", "run") """ sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype, sesspar.plane, stimpar.visflow_dir, stimpar.visflow_size, stimpar.gabk, "print") dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane, datatype, "print") datastr = sess_str_util.datatype_par_str(datatype) logger.info( f"Analysing and plotting unexpected vs expected {datastr} " f"traces locked to unexpected onset by quantile ({quantpar.n_quants}) " f"\n({sessstr_pr}{dendstr_pr}).", extra={"spacing": "\n"}) seed = rand_util.seed_all(seed, "cpu", log_seed=False) # modify quantpar to retain all quantiles quantpar_one = sess_ntuple_util.init_quantpar(1, 0) n_quants = quantpar.n_quants quantpar_mult = sess_ntuple_util.init_quantpar(n_quants, "all") if stimpar.stimtype == "visflow": pre_post = [2.0, 6.0] elif stimpar.stimtype == "gabors": pre_post = [2.0, 8.0] else: gen_util.accepted_values_error("stimpar.stimtype", stimpar.stimtype, ["visflow", "gabors"]) logger.warning("Setting pre to {}s and post to {}s.".format(*pre_post)) stimpar = sess_ntuple_util.get_modif_ntuple(stimpar, ["pre", "post"], pre_post) figpar = copy.deepcopy(figpar) if figpar["save"]["use_dt"] is None: figpar["save"]["use_dt"] = gen_util.create_time_str() for baseline in [None, stimpar.pre]: basestr_pr = sess_str_util.base_par_str(baseline, "print") for quantpar in [quantpar_one, quantpar_mult]: locks = ["unexp", "exp"] if quantpar.n_quants == 1: locks.append("unexp_split") # get the stats (all) separating by session and quantiles for lock in locks: logger.info( f"{quantpar.n_quants} quant, {lock} lock{basestr_pr}", extra={"spacing": "\n"}) if lock == "unexp_split": trace_info = quant_analys.trace_stats_by_exp_len_sess( sessions, analyspar, stimpar, quantpar.n_quants, quantpar.qu_idx, byroi=False, nan_empty=True, baseline=baseline, datatype=datatype) else: trace_info = quant_analys.trace_stats_by_qu_sess( sessions, analyspar, stimpar, quantpar.n_quants, quantpar.qu_idx, byroi=False, lock=lock, nan_empty=True, baseline=baseline, datatype=datatype) # for comparison, locking to middle of expected sample (1 quant) exp_samp = quant_analys.trace_stats_by_qu_sess( sessions, analyspar, stimpar, quantpar_one.n_quants, quantpar_one.qu_idx, byroi=False, lock="exp_samp", nan_empty=True, baseline=baseline, datatype=datatype) extrapar = { "analysis": analysis, "datatype": datatype, "seed": seed, } xrans = [xran.tolist() for xran in trace_info[0]] all_stats = [sessst.tolist() for sessst in trace_info[1]] exp_stats = [expst.tolist() for expst in exp_samp[1]] trace_stats = { "xrans": xrans, "all_stats": all_stats, "all_counts": trace_info[2], "lock": lock, "baseline": baseline, "exp_stats": exp_stats, "exp_counts": exp_samp[2] } if lock == "unexp_split": trace_stats["unexp_lens"] = trace_info[3] sess_info = sess_gen_util.get_sess_info( sessions, analyspar.fluor, incl_roi=(datatype == "roi"), rem_bad=analyspar.rem_bad) info = { "analyspar": analyspar._asdict(), "sesspar": sesspar._asdict(), "stimpar": stimpar._asdict(), "quantpar": quantpar._asdict(), "extrapar": extrapar, "sess_info": sess_info, "trace_stats": trace_stats } fulldir, savename = gen_plots.plot_traces_by_qu_lock_sess( figpar=figpar, **info) file_util.saveinfo(info, savename, fulldir, "json")
def run_mag_change(sessions, analysis, seed, analyspar, sesspar, stimpar, permpar, quantpar, figpar, datatype="roi"): """ run_mag_change(sessions, analysis, seed, analyspar, sesspar, stimpar, permpar, quantpar, figpar) Calculates and plots the magnitude of change in activity of ROIs between the first and last quantile for expected vs unexpected sequences. Saves results and parameters relevant to analysis in a dictionary. Required args: - sessions (list) : list of Session objects - analysis (str) : analysis type (e.g., "m") - seed (int) : seed value to use. (-1 treated as None) - analyspar (AnalysPar): named tuple containing analysis parameters - sesspar (SessPar) : named tuple containing session parameters - stimpar (StimPar) : named tuple containing stimulus parameters - permpar (PermPar) : named tuple containing permutation parameters - quantpar (QuantPar) : named tuple containing quantile analysis parameters - figpar (dict) : dictionary containing figure parameters Optional args: - datatype (str): type of data (e.g., "roi", "run") """ sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype, sesspar.plane, stimpar.visflow_dir, stimpar.visflow_size, stimpar.gabk, "print") dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane, datatype, "print") datastr = sess_str_util.datatype_par_str(datatype) logger.info( f"Calculating and plotting the magnitude changes in {datastr} " f"activity across quantiles \n({sessstr_pr}{dendstr_pr}).", extra={"spacing": "\n"}) if permpar.multcomp: permpar = sess_ntuple_util.get_modif_ntuple(permpar, "multcomp", len(sessions)) # get full data: session x unexp x quants of interest x [ROI x seq] integ_info = quant_analys.trace_stats_by_qu_sess(sessions, analyspar, stimpar, quantpar.n_quants, quantpar.qu_idx, by_exp=True, integ=True, ret_arr=True, datatype=datatype) all_counts = integ_info[-2] qu_data = integ_info[-1] # extract session info mouse_ns = [sess.mouse_n for sess in sessions] lines = [sess.line for sess in sessions] if analyspar.rem_bad: nanpol = None else: nanpol = "omit" seed = rand_util.seed_all(seed, "cpu", log_seed=False) mags = quant_analys.qu_mags(qu_data, permpar, mouse_ns, lines, analyspar.stats, analyspar.error, nanpol=nanpol, op_qu="diff", op_unexp="diff") # convert mags items to list mags = copy.deepcopy(mags) mags["all_counts"] = all_counts for key in ["mag_st", "L2", "mag_rel_th", "L2_rel_th"]: mags[key] = mags[key].tolist() sess_info = sess_gen_util.get_sess_info(sessions, analyspar.fluor, incl_roi=(datatype == "roi"), rem_bad=analyspar.rem_bad) extrapar = {"analysis": analysis, "datatype": datatype, "seed": seed} info = { "analyspar": analyspar._asdict(), "sesspar": sesspar._asdict(), "stimpar": stimpar._asdict(), "extrapar": extrapar, "permpar": permpar._asdict(), "quantpar": quantpar._asdict(), "mags": mags, "sess_info": sess_info } fulldir, savename = gen_plots.plot_mag_change(figpar=figpar, **info) file_util.saveinfo(info, savename, fulldir, "json")
def plot_glm_expl_var(analyspar, sesspar, stimpar, extrapar, glmpar, sess_info, all_expl_var, figpar=None, savedir=None): """ plot_glm_expl_var(analyspar, sesspar, stimpar, extrapar, sess_info, all_expl_var) From dictionaries, plots explained variance for different variables for each ROI. Required args: - analyspar (dict) : dictionary with keys of AnalysPar namedtuple - sesspar (dict) : dictionary with keys of SessPar namedtuple - stimpar (dict) : dictionary with keys of StimPar namedtuple - glmpar (dict) : dictionary with keys of GLMPar namedtuple - extrapar (dict) : dictionary containing additional analysis parameters ["analysis"] (str): analysis type (e.g., "v") - sess_info (dict) : dictionary containing information from each session ["mouse_ns"] (list) : mouse numbers ["sess_ns"] (list) : session numbers ["lines"] (list) : mouse lines ["planes"] (list) : imaging planes ["nrois"] (list) : number of ROIs in session - all_expl_var (list) : list of dictionaries with explained variance for each session set, with each glm coefficient as a key: ["full"] (list) : list of full explained variance stats for every ROI, structured as ROI x stats ["coef_all"] (dict): max explained variance for each ROI with each coefficient as a key, structured as ROI x stats ["coef_uni"] (dict): unique explained variance for each ROI with each coefficient as a key, structured as ROI x stats ["rois"] (list) : ROI numbers (-1 for GLMs fit to mean/median ROI activity) Optional args: - figpar (dict): dictionary containing the following figure parameter dictionaries default: None ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters - savedir (str): path of directory in which to save plots. default: None Returns: - fulldir (str) : final path of the directory in which the figure is saved (may differ from input savedir, if datetime subfolder is added.) - savename (str): name under which the figure is saved """ stimstr_pr = sess_str_util.stim_par_str( stimpar["stimtype"], stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"], "print") dendstr_pr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], "roi", "print") sessstr = sess_str_util.sess_par_str( sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"]) dendstr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], "roi") # extract some info from sess_info keys = ["mouse_ns", "sess_ns", "lines", "planes"] [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys] n_sess = len(mouse_ns) nroi_strs = sess_str_util.get_nroi_strs(sess_info, style="par") plot_bools = [ev["rois"] not in [[-1], "all"] for ev in all_expl_var] n_sess = sum(plot_bools) if stimpar["stimtype"] == "gabors": xyzc_dims = ["unexpected", "gabor_frame", "run_data", "pup_diam_data"] log_dims = xyzc_dims + ["gabor_mean_orientation"] elif stimpar["stimtype"] == "visflow": xyzc_dims = [ "unexpected", "main_flow_direction", "run_data", "pup_diam_data" ] log_dims = xyzc_dims # start plotting logger.info("Plotting GLM full and unique explained variance for " f"{', '.join(xyzc_dims)}.", extra={"spacing": "\n"}) if n_sess > 0: if figpar is None: figpar = sess_plot_util.init_figpar() figpar = copy.deepcopy(figpar) cmap = plot_util.linclab_colormap(nbins=100, no_white=True) if figpar["save"]["use_dt"] is None: figpar["save"]["use_dt"] = gen_util.create_time_str() figpar["init"]["ncols"] = n_sess figpar["init"]["sharex"] = False figpar["init"]["sharey"] = False figpar["init"]["gs"] = {"wspace": 0.2, "hspace": 0.35} figpar["save"]["fig_ext"] = "png" fig, ax = plot_util.init_fig(2 * n_sess, **figpar["init"], proj="3d") fig.suptitle("Explained variance per ROI", y=1) # get colormap range c_range = [np.inf, -np.inf] c_key = xyzc_dims[3] for expl_var in all_expl_var: for var_type in ["coef_all", "coef_uni"]: rs = np.where(np.asarray(expl_var["rois"]) != -1)[0] if c_key in expl_var[var_type].keys(): c_data = np.asarray(expl_var[var_type][c_key])[rs, 0] # adjust colormap range c_range[0] = np.min([c_range[0], min(c_data)]) c_range[1] = np.max([c_range[1], max(c_data)]) if not np.isfinite(sum(c_range)): c_range = [-0.5, 0.5] # dummy range else: c_range = plot_util.rounded_lims(c_range, out=True) else: logger.info("No plots, as only results across ROIs are included") fig = None i = 0 for expl_var in all_expl_var: # collect info for plotting and logging results across ROIs rs = np.where(np.asarray(expl_var["rois"]) != -1)[0] all_rs = np.where(np.asarray(expl_var["rois"]) == -1)[0] if len(all_rs) != 1: raise RuntimeError("Expected only one result for all ROIs.") else: all_rs = all_rs[0] full_ev = expl_var["full"][all_rs] title = (f"Mouse {mouse_ns[i]} - {stimstr_pr}\n(sess {sess_ns[i]}, " f"{lines[i]} {planes[i]}{dendstr_pr},{nroi_strs[i]})") logger.info(title, extra={"spacing": "\n"}) math_util.log_stats(full_ev, stat_str="\nFull explained variance") dim_length = max([len(dim) for dim in log_dims]) for v, var_type in enumerate(["coef_all", "coef_uni"]): if var_type == "coef_all": sub_title = "Explained variance per coefficient" elif var_type == "coef_uni": sub_title = "Unique explained variance\nper coefficient" logger.info(sub_title, extra={"spacing": "\n"}) dims_all = [] for key in log_dims: if key in xyzc_dims: # get mean/med if key not in expl_var[var_type].keys(): dims_all.append("dummy") continue dims_all.append(np.asarray(expl_var[var_type][key])[rs, 0]) math_util.log_stats( expl_var[var_type][key][all_rs], stat_str=key.ljust(dim_length), log_spacing=TAB ) if not plot_bools[-1]: continue if v == 0: y = 1.12 subpl_title = f"{title}\n{sub_title}" else: y = 1.02 subpl_title = sub_title # retrieve values and names for each dimension, including dummy # dimensions use_xyzc_dims = [] n_vals = None dummies = [] pads = [16, 16, 20] for d, dim in enumerate(dims_all): dim_name = xyzc_dims[d].replace("_", " ") if " direction" in dim_name: dim_name = dim_name.replace(" direction", "\ndirection") pads[d] = 24 if isinstance(dim, str) and dim == "dummy": dummies.append(d) use_xyzc_dims.append(f"{dim_name} (dummy)") else: n_vals = len(dim) use_xyzc_dims.append(dim_name) for d in dummies: dims_all[d] = np.zeros(n_vals) [x_data, y_data, z_data, c_data] = dims_all sub_ax = ax[v, i] im = sub_ax.scatter( x_data, y_data, z_data, c=c_data, cmap=cmap, vmin=c_range[0], vmax=c_range[1] ) sub_ax.set_title(subpl_title, y=y) # sub_ax.set_zlim3d(0, 1.0) # adjust padding for z axis sub_ax.tick_params(axis='z', which='major', pad=10) # add labels sub_ax.set_xlabel(use_xyzc_dims[0], labelpad=pads[0]) sub_ax.set_ylabel(use_xyzc_dims[1], labelpad=pads[1]) sub_ax.set_zlabel(use_xyzc_dims[2], labelpad=pads[2]) if v == 0: full_ev_lab = math_util.log_stats( full_ev, stat_str="Full EV", ret_str_only=True ) sub_ax.plot([], [], c="k", label=full_ev_lab) sub_ax.legend() i += 1 if fig is not None: plot_util.add_colorbar( fig, im, n_sess, label=use_xyzc_dims[3], space_fact=np.max([2, n_sess]) ) # plot 0 planes, and lines for sub_ax in ax.reshape(-1): sub_ax.autoscale(False) all_lims = [sub_ax.get_xlim(), sub_ax.get_ylim(), sub_ax.get_zlim()] xs, ys, zs = [ [vs[0] - (vs[1] - vs[0]) * 0.02, vs[1] + (vs[1] - vs[0]) * 0.02] for vs in all_lims ] for plane in ["x", "y", "z"]: if plane == "x": xx, yy = np.meshgrid(xs, ys) zz = xx * 0 x_flat = xs y_flat, z_flat = [0, 0], [0, 0] elif plane == "y": yy, zz = np.meshgrid(ys, zs) xx = yy * 0 y_flat = ys z_flat, x_flat = [0, 0], [0, 0] elif plane == "z": zz, xx = np.meshgrid(zs, xs) yy = zz * 0 z_flat = zs x_flat, y_flat = [0, 0], [0, 0] sub_ax.plot_surface(xx, yy, zz, alpha=0.05, color="k") sub_ax.plot( x_flat, y_flat, z_flat, alpha=0.4, color="k", ls=(0, (2, 2)) ) if savedir is None: savedir = Path( figpar["dirs"]["roi"], figpar["dirs"]["glm"]) savename = (f"roi_glm_ev_{sessstr}{dendstr}") fulldir = plot_util.savefig(fig, savename, savedir, **figpar["save"]) return fulldir, savename
def run_traces_by_qu_unexp_sess(sessions, analysis, analyspar, sesspar, stimpar, quantpar, figpar, datatype="roi"): """ run_traces_by_qu_unexp_sess(sessions, analysis, analyspar, sesspar, stimpar, quantpar, figpar) Retrieves trace statistics by session x unexp val x quantile and plots traces across ROIs by quantile/unexpected with each session in a separate subplot. Also runs analysis for one quantile (full data). Saves results and parameters relevant to analysis in a dictionary. Required args: - sessions (list) : list of Session objects - analysis (str) : analysis type (e.g., "t") - analyspar (AnalysPar): named tuple containing analysis parameters - sesspar (SessPar) : named tuple containing session parameters - stimpar (StimPar) : named tuple containing stimulus parameters - quantpar (QuantPar) : named tuple containing quantile analysis parameters - figpar (dict) : dictionary containing figure parameters Optional args: - datatype (str): type of data (e.g., "roi", "run") """ sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype, sesspar.plane, stimpar.visflow_dir, stimpar.visflow_size, stimpar.gabk, "print") dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane, datatype, "print") datastr = sess_str_util.datatype_par_str(datatype) logger.info( f"Analysing and plotting unexpected vs expected {datastr} " f"traces by quantile ({quantpar.n_quants}) \n({sessstr_pr}" f"{dendstr_pr}).", extra={"spacing": "\n"}) # modify quantpar to retain all quantiles quantpar_one = sess_ntuple_util.init_quantpar(1, 0) n_quants = quantpar.n_quants quantpar_mult = sess_ntuple_util.init_quantpar(n_quants, "all") figpar = copy.deepcopy(figpar) if figpar["save"]["use_dt"] is None: figpar["save"]["use_dt"] = gen_util.create_time_str() for quantpar in [quantpar_one, quantpar_mult]: logger.info(f"{quantpar.n_quants} quant", extra={"spacing": "\n"}) # get the stats (all) separating by session, unexpected and quantiles trace_info = quant_analys.trace_stats_by_qu_sess(sessions, analyspar, stimpar, quantpar.n_quants, quantpar.qu_idx, byroi=False, by_exp=True, datatype=datatype) extrapar = { "analysis": analysis, "datatype": datatype, } xrans = [xran.tolist() for xran in trace_info[0]] all_stats = [sessst.tolist() for sessst in trace_info[1]] trace_stats = { "xrans": xrans, "all_stats": all_stats, "all_counts": trace_info[2] } sess_info = sess_gen_util.get_sess_info(sessions, analyspar.fluor, incl_roi=(datatype == "roi"), rem_bad=analyspar.rem_bad) info = { "analyspar": analyspar._asdict(), "sesspar": sesspar._asdict(), "stimpar": stimpar._asdict(), "quantpar": quantpar._asdict(), "extrapar": extrapar, "sess_info": sess_info, "trace_stats": trace_stats } fulldir, savename = gen_plots.plot_traces_by_qu_unexp_sess( figpar=figpar, **info) file_util.saveinfo(info, savename, fulldir, "json")
def plot_mag_change(analyspar, sesspar, stimpar, extrapar, permpar, quantpar, sess_info, mags, figpar=None, savedir=None): """ plot_mag_change(analyspar, sesspar, stimpar, extrapar, permpar, quantpar, sess_info, mags) From dictionaries, plots magnitude of change in unexpected and expected responses across quantiles. Returns figure name and save directory path. Required args: - analyspar (dict): dictionary with keys of AnalysPar namedtuple - sesspar (dict) : dictionary with keys of SessPar namedtuple - stimpar (dict) : dictionary with keys of StimPar namedtuple - extrapar (dict) : dictionary containing additional analysis parameters ["analysis"] (str): analysis type (e.g., "m") ["datatype"] (str): datatype (e.g., "run", "roi") ["seed"] (int): seed value used - permpar (dict) : dictionary with keys of PermPar namedtuple - quantpar (dict) : dictionary with keys of QuantPar namedtuple - roigrppar (dict): dictionary with keys of RoiGrpPar namedtuple - sess_info (dict): dictionary containing information from each session ["mouse_ns"] (list) : mouse numbers ["sess_ns"] (list) : session numbers ["lines"] (list) : mouse lines ["planes"] (list) : imaging planes ["nrois"] (list) : number of ROIs in session - mags (dict) : dictionary containing magnitude data to plot ["L2"] (array-like) : nested list containing L2 norms, structured as: sess x scaling x unexp ["L2_sig"] (list) : L2 significance results for each session ("hi", "lo" or "no") ["mag_sig"] (list) : magnitude significance results for each session ("hi", "lo" or "no") ["mag_st"] (array-like): array or nested list containing magnitude stats across ROIs, structured as: sess x scaling x unexp x stats Optional args: - figpar (dict): dictionary containing the following figure parameter dictionaries default: None ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters - savedir (str): path of directory in which to save plots. default: None Returns: - fulldir (str) : final path of the directory in which the figure is saved (may differ from input savedir, if datetime subfolder is added.) - savename (str): name under which the figure is saved """ sessstr_pr = sess_str_util.sess_par_str( sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"], "print") statstr_pr = sess_str_util.stat_par_str( analyspar["stats"], analyspar["error"], "print") dendstr_pr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], extrapar["datatype"], "print") sessstr = sess_str_util.sess_par_str( sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], stimpar["visflow_dir"],stimpar["visflow_size"], stimpar["gabk"]) dendstr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], extrapar["datatype"]) datatype = extrapar["datatype"] dimstr = sess_str_util.datatype_dim_str(datatype) # extract some info from sess_info keys = ["mouse_ns", "sess_ns", "lines", "planes"] [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys] nroi_strs = sess_str_util.get_nroi_strs( sess_info, empty=(datatype!="roi"), style="par" ) n_sess = len(mouse_ns) qu_ns = [gen_util.pos_idx(q, quantpar["n_quants"]) + 1 for q in quantpar["qu_idx"]] if len(qu_ns) != 2: raise ValueError(f"Expected 2 quantiles, not {len(qu_ns)}.") mag_st = np.asarray(mags["mag_st"]) if figpar is None: figpar = sess_plot_util.init_figpar() figpar = copy.deepcopy(figpar) if figpar["save"]["use_dt"] is None: figpar["save"]["use_dt"] = gen_util.create_time_str() figpar["init"]["subplot_wid"] *= n_sess/2.0 scales = [False, True] # get plot elements barw = 0.75 # scaling strings for printing and filenames leg = ["exp", "unexp"] cent, bar_pos, xlims = plot_util.get_barplot_xpos(n_sess, len(leg), barw) title = (u"Magnitude ({}) of difference in activity".format(statstr_pr) + f"\nbetween Q{qu_ns[0]} and {qu_ns[1]} across {dimstr} " f"\n({sessstr_pr})") labels = [f"Mouse {mouse_ns[i]} sess {sess_ns[i]},\n {lines[i]} {planes[i]}" f"{dendstr_pr}{nroi_strs[i]}" for i in range(n_sess)] figs, axs = [], [] for sc, scale in enumerate(scales): scalestr_pr = sess_str_util.scale_par_str(scale, "print") fig, ax = plot_util.init_fig(1, **figpar["init"]) figs.append(fig) axs.append(ax) sub_ax = ax[0, 0] # always set ticks (even again) before setting labels sub_ax.set_xticks(cent) sub_ax.set_xticklabels(labels) title_scale = u"{}{}".format(title, scalestr_pr) sess_plot_util.add_axislabels( sub_ax, fluor=analyspar["fluor"], area=True, scale=scale, x_ax="", datatype=datatype) for s, lab in enumerate(leg): xpos = list(zip(*bar_pos))[s] plot_util.plot_bars( sub_ax, xpos, mag_st[:, sc, s, 0], err=mag_st[:, sc, s, 1:], width=barw, xlims=xlims, xticks="None", label=lab, capsize=4, title=title_scale, hline=0) # add significance markers for i in range(n_sess): signif = mags["mag_sig"][i] if signif in ["hi", "lo"]: xpos = bar_pos[i] for sc, (ax, scale) in enumerate(zip(axs, scales)): yval = mag_st[i, sc, :, 0] yerr = mag_st[i, sc, :, 1:] plot_util.plot_barplot_signif(ax[0, 0], xpos, yval, yerr) plot_util.turn_off_extra(ax, n_sess) # figure directory if savedir is None: savedir = Path( figpar["dirs"][datatype], figpar["dirs"]["unexp_qu"], figpar["dirs"]["mags"]) log_dir = False for i, (fig, scale) in enumerate(zip(figs, scales)): if i == len(figs) - 1: log_dir = True scalestr = sess_str_util.scale_par_str(scale) savename = f"{datatype}_mag_diff_{sessstr}{dendstr}" savename_full = f"{savename}{scalestr}" fulldir = plot_util.savefig( fig, savename_full, savedir, log_dir=log_dir, ** figpar["save"]) return fulldir, savename
def plot_autocorr(analyspar, sesspar, stimpar, extrapar, autocorrpar, sess_info, autocorr_data, figpar=None, savedir=None): """ plot_autocorr(analyspar, sesspar, stimpar, extrapar, autocorrpar, sess_info, autocorr_data) From dictionaries, plots autocorrelation during stimulus blocks. Required args: - analyspar (dict) : dictionary with keys of AnalysPar namedtuple - sesspar (dict) : dictionary with keys of SessPar namedtuple - stimpar (dict) : dictionary with keys of StimPar namedtuple - extrapar (dict) : dictionary containing additional analysis parameters ["analysis"] (str): analysis type (e.g., "a") ["datatype"] (str): datatype (e.g., "run", "roi") - autocorrpar (dict) : dictionary with keys of AutocorrPar namedtuple - sess_info (dict) : dictionary containing information from each session ["mouse_ns"] (list) : mouse numbers ["sess_ns"] (list) : session numbers ["lines"] (list) : mouse lines ["planes"] (list) : imaging planes ["nrois"] (list) : number of ROIs in session - autocorr_data (dict): dictionary containing data to plot: ["xrans"] (list): list of lag values in seconds for each session ["stats"] (list): list of 3D arrays (or nested lists) of autocorrelation statistics, structured as: sessions stats (me, err) x ROI or 1x and 10x lag x lag Optional args: - figpar (dict): dictionary containing the following figure parameter dictionaries default: None ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters - savedir (str): path of directory in which to save plots. default: None Returns: - fulldir (str) : final path of the directory in which the figure is saved (may differ from input savedir, if datetime subfolder is added.) - savename (str): name under which the figure is saved """ statstr_pr = sess_str_util.stat_par_str( analyspar["stats"], analyspar["error"], "print") stimstr_pr = sess_str_util.stim_par_str( stimpar["stimtype"], stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"], "print") dendstr_pr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], extrapar["datatype"], "print") sessstr = sess_str_util.sess_par_str( sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], stimpar["visflow_dir"],stimpar["visflow_size"], stimpar["gabk"]) dendstr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], extrapar["datatype"]) datatype = extrapar["datatype"] if datatype == "roi": fluorstr_pr = sess_str_util.fluor_par_str( analyspar["fluor"], str_type="print") if autocorrpar["byitem"]: title_str = u"{}\nautocorrelation".format(fluorstr_pr) else: title_str = "\nautocorr. acr. ROIs" .format(fluorstr_pr) elif datatype == "run": datastr = sess_str_util.datatype_par_str(datatype) title_str = u"\n{} autocorrelation".format(datastr) if stimpar["stimtype"] == "gabors": seq_bars = [-1.5, 1.5] # light lines else: seq_bars = [-1.0, 1.0] # light lines # extract some info from sess_info keys = ["mouse_ns", "sess_ns", "lines", "planes"] [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys] nroi_strs = sess_str_util.get_nroi_strs(sess_info, empty=(datatype!="roi")) n_sess = len(mouse_ns) xrans = autocorr_data["xrans"] stats = [np.asarray(stat) for stat in autocorr_data["stats"]] lag_s = autocorrpar["lag_s"] xticks = np.linspace(-lag_s, lag_s, lag_s*2+1) yticks = np.linspace(0, 1, 6) if figpar is None: figpar = sess_plot_util.init_figpar() byitemstr = "" if autocorrpar["byitem"]: byitemstr = "_byroi" fig, ax = plot_util.init_fig(n_sess, **figpar["init"]) for i in range(n_sess): sub_ax = plot_util.get_subax(ax, i) title = (f"Mouse {mouse_ns[i]} - {stimstr_pr}, " u"{} ".format(statstr_pr) + f"{title_str} (sess " f"{sess_ns[i]}, {lines[i]} {planes[i]}{dendstr_pr}{nroi_strs[i]})") # transpose to ROI/lag x stats x series sess_stats = stats[i].transpose(1, 0, 2) for s, sub_stats in enumerate(sess_stats): lab = None if not autocorrpar["byitem"]: lab = ["actual lag", "10x lag"][s] plot_util.plot_traces( sub_ax, xrans[i], sub_stats[0], sub_stats[1:], xticks=xticks, yticks=yticks, alpha=0.2, label=lab) plot_util.add_bars(sub_ax, hbars=seq_bars) sub_ax.set_ylim([0, 1]) sub_ax.set_title(title, y=1.02) if sub_ax.is_last_row(): sub_ax.set_xlabel("Lag (s)") plot_util.turn_off_extra(ax, n_sess) if savedir is None: savedir = Path( figpar["dirs"][datatype], figpar["dirs"]["autocorr"]) savename = (f"{datatype}_autocorr{byitemstr}_{sessstr}{dendstr}") fulldir = plot_util.savefig(fig, savename, savedir, **figpar["save"]) return fulldir, savename
def plot_traces_by_qu_lock_sess(analyspar, sesspar, stimpar, extrapar, quantpar, sess_info, trace_stats, figpar=None, savedir=None, modif=False): """ plot_traces_by_qu_lock_sess(analyspar, sesspar, stimpar, extrapar, quantpar, sess_info, trace_stats) From dictionaries, plots traces by quantile, locked to transitions from unexpected to expected or v.v. with each session in a separate subplot. Returns figure name and save directory path. Required args: - analyspar (dict) : dictionary with keys of AnalysPar namedtuple - sesspar (dict) : dictionary with keys of SessPar namedtuple - stimpar (dict) : dictionary with keys of StimPar namedtuple - extrapar (dict) : dictionary containing additional analysis parameters ["analysis"] (str): analysis type (e.g., "l") ["datatype"] (str): datatype (e.g., "run", "roi") - quantpar (dict) : dictionary with keys of QuantPar namedtuple - sess_info (dict) : dictionary containing information from each session ["mouse_ns"] (list) : mouse numbers ["sess_ns"] (list) : session numbers ["lines"] (list) : mouse lines ["planes"] (list) : imaging planes if datatype == ["nrois"] (list) : number of ROIs in session - trace_stats (dict): dictionary containing trace stats information ["xrans"] (list) : time values for the 2p frames for each session ["all_stats"] (list) : list of 4D arrays or lists of trace data statistics across ROIs for each session, structured as: (unexp_len x) quantiles x stats (me, err) x frames ["all_counts"] (array-like): number of sequences, structured as: sess x (unexp_len x) quantiles ["lock"] (str) : value to which segments are locked: "unexp", "exp" or "unexp_split" ["baseline"] (num) : number of seconds used for baseline ["exp_stats"] (list) : list of 3D arrays or lists of trace data statistics across ROIs for expected sampled sequences, structured as: quantiles (1) x stats (me, err) x frames ["exp_counts"] (array-like): number of sequences corresponding to exp_stats, structured as: sess x quantiles (1) if data is by unexp_len: ["unexp_lens"] (list) : number of consecutive segments for each unexp_len, structured by session Optional args: - figpar (dict): dictionary containing the following figure parameter dictionaries default: None ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters - savedir (str): path of directory in which to save plots. default: None - modif (bool) : if True, modified (slimmed-down) plots are created instead default: False Returns: - fulldir (str) : final path of the directory in which the figure is saved (may differ from input savedir, if datetime subfolder is added.) - savename (str): name under which the figure is saved """ analyspar["dend"] = None stimstr_pr = sess_str_util.stim_par_str( stimpar["stimtype"], stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"], "print") statstr_pr = sess_str_util.stat_par_str( analyspar["stats"], analyspar["error"], "print") dendstr_pr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], extrapar["datatype"], "print") sessstr = sess_str_util.sess_par_str( sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"]) dendstr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], extrapar["datatype"]) basestr = sess_str_util.base_par_str(trace_stats["baseline"]) basestr_pr = sess_str_util.base_par_str(trace_stats["baseline"], "print") datatype = extrapar["datatype"] dimstr = sess_str_util.datatype_dim_str(datatype) # extract some info from sess_info keys = ["mouse_ns", "sess_ns", "lines", "planes"] [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys] nroi_strs = sess_str_util.get_nroi_strs(sess_info, empty=(datatype!="roi")) n_sess = len(mouse_ns) xrans = [np.asarray(xran) for xran in trace_stats["xrans"]] all_stats = [np.asarray(sessst) for sessst in trace_stats["all_stats"]] exp_stats = [np.asarray(expst) for expst in trace_stats["exp_stats"]] all_counts = trace_stats["all_counts"] exp_counts = trace_stats["exp_counts"] lock = trace_stats["lock"] col_idx = 0 if "unexp" in lock: lock = "unexp" col_idx = 1 # plot unexp_lens default values if stimpar["stimtype"] == "gabors": DEFAULT_UNEXP_LEN = [3.0, 4.5, 6.0] if stimpar["gabfr"] not in ["any", "all"]: offset = sess_str_util.gabfr_nbrs(stimpar["gabfr"]) else: DEFAULT_UNEXP_LEN = [2.0, 3.0, 4.0] offset = 0 unexp_lab, len_ext = "", "" unexp_lens = [[None]] * n_sess unexp_len_default = True if "unexp_lens" in trace_stats.keys(): unexp_len_default = False unexp_lens = trace_stats["unexp_lens"] len_ext = "_bylen" if stimpar["stimtype"] == "gabors": unexp_lens = [ [sl * 1.5/5 - 0.3 * offset for sl in sls] for sls in unexp_lens ] inv = 1 if lock == "unexp" else -1 # RANGE TO PLOT if modif: st_val = -2.0 end_val = 6.0 n_ticks = int((end_val - st_val) // 2 + 1) else: n_ticks = 21 if figpar is None: figpar = sess_plot_util.init_figpar() figpar = copy.deepcopy(figpar) if modif: figpar["init"]["subplot_wid"] = 6.5 else: figpar["init"]["subplot_wid"] *= 2 fig, ax = plot_util.init_fig(n_sess, **figpar["init"]) exp_min, exp_max = np.inf, -np.inf for i, (stats, counts) in enumerate(zip(all_stats, all_counts)): sub_ax = plot_util.get_subax(ax, i) # plot expected data if exp_stats[i].shape[0] != 1: raise ValueError("Expected only one quantile for exp_stats.") n_lines = quantpar["n_quants"] * len(unexp_lens[i]) cols = sess_plot_util.get_quant_cols(n_lines)[0][col_idx] if len(cols) < n_lines: cols = [None] * n_lines if modif: line = "2/3" if "23" in lines[i] else "5" plane = "somata" if "soma" in planes[i] else "dendrites" title = f"M{mouse_ns[i]} - layer {line} {plane}{dendstr_pr}" lab = "exp" if i == 0 else None y_ax = None if i == 0 else "" st, end = 0, len(xrans[i]) st_vals = list(filter( lambda j: xrans[i][j] <= st_val, range(len(xrans[i])) )) end_vals = list(filter( lambda j: xrans[i][j] >= end_val, range(len(xrans[i])) )) if len(st_vals) != 0: st = st_vals[-1] if len(end_vals) != 0: end = end_vals[0] + 1 time_slice = slice(st, end) else: title = (f"Mouse {mouse_ns[i]} - {stimstr_pr}, " u"{} ".format(statstr_pr) + f"{lock} locked across {dimstr}" f"{basestr_pr}\n(sess {sess_ns[i]}, {lines[i]} {planes[i]}" f"{dendstr_pr}{nroi_strs[i]})") lab = f"exp (no lock) ({exp_counts[i][0]})" y_ax = None st = 0 end = len(xrans[i]) time_slice = slice(None) # use all # add length markers use_unexp_lens = unexp_lens[i] if unexp_len_default: use_unexp_lens = DEFAULT_UNEXP_LEN leng_col = sess_plot_util.get_quant_cols(1)[0][col_idx][0] for leng in use_unexp_lens: if leng is None: continue edge = leng * inv if edge < 0: edge = np.max([xrans[i][st], edge]) elif edge > 0: edge = np.min([xrans[i][end - 1], edge]) plot_util.add_vshade( sub_ax, 0, edge, color=leng_col, alpha=0.1) sess_plot_util.add_axislabels( sub_ax, fluor=analyspar["fluor"], datatype=datatype, y_ax=y_ax ) plot_util.add_bars(sub_ax, hbars=0) alpha = np.min([0.4, 0.8 / n_lines]) if stimpar["stimtype"] == "gabors": sess_plot_util.plot_gabfr_pattern( sub_ax, xrans[i], offset=offset, bars_omit=[0] + unexp_lens[i] ) plot_util.plot_traces( sub_ax, xrans[i][time_slice], exp_stats[i][0][0, time_slice], exp_stats[i][0][1:, time_slice], n_xticks=n_ticks, alpha=alpha, label=lab, alpha_line=0.8, color="darkgray", xticks="auto") # get expected data range to adjust y lims exp_min = np.min([exp_min, np.nanmin(exp_stats[i][0][0])]) exp_max = np.max([exp_max, np.nanmax(exp_stats[i][0][0])]) n = 0 # count lines plotted for s, unexp_len in enumerate(unexp_lens[i]): if unexp_len is not None: counts, stats = all_counts[i][s], all_stats[i][s] # remove offset unexp_lab = f"unexp len {unexp_len + 0.3 * offset}" else: unexp_lab = "unexp" if modif else f"{lock} lock" for q, qu_idx in enumerate(quantpar["qu_idx"]): qu_lab = "" if quantpar["n_quants"] > 1: qu_lab = "{} ".format(sess_str_util.quantile_str( qu_idx, quantpar["n_quants"], str_type="print" )) lab = f"{qu_lab}{unexp_lab}" if modif: lab = lab if i == 0 else None else: lab = f"{lab} ({counts[q]})" if n == 2 and cols[n] is None: sub_ax.plot([], []) # to advance the color cycle (past gray) plot_util.plot_traces(sub_ax, xrans[i][time_slice], stats[q][0, time_slice], stats[q][1:, time_slice], title, alpha=alpha, label=lab, n_xticks=n_ticks, alpha_line=0.8, color=cols[n], xticks="auto") n += 1 if unexp_len is not None: plot_util.add_bars( sub_ax, hbars=unexp_len, color=sub_ax.lines[-1].get_color(), alpha=1) plot_util.turn_off_extra(ax, n_sess) if savedir is None: savedir = Path( figpar["dirs"][datatype], figpar["dirs"]["unexp_qu"], f"{lock}_lock", basestr.replace("_", "")) if not modif: if stimpar["stimtype"] == "visflow": plot_util.rel_confine_ylims(sub_ax, [exp_min, exp_max], 5) qu_str = f"_{quantpar['n_quants']}q" if quantpar["n_quants"] == 1: qu_str = "" savename = (f"{datatype}_av_{lock}_lock{len_ext}{basestr}_{sessstr}" f"{dendstr}{qu_str}") fulldir = plot_util.savefig(fig, savename, savedir, **figpar["save"]) return fulldir, savename
def plot_traces_by_qu_unexp_sess(analyspar, sesspar, stimpar, extrapar, quantpar, sess_info, trace_stats, figpar=None, savedir=None, modif=False): """ plot_traces_by_qu_unexp_sess(analyspar, sesspar, stimpar, extrapar, quantpar, sess_info, trace_stats) From dictionaries, plots traces by quantile/unexpected with each session in a separate subplot. Returns figure name and save directory path. Required args: - analyspar (dict) : dictionary with keys of AnalysPar namedtuple - sesspar (dict) : dictionary with keys of SessPar namedtuple - stimpar (dict) : dictionary with keys of StimPar namedtuple - extrapar (dict) : dictionary containing additional analysis parameters ["analysis"] (str): analysis type (e.g., "t") ["datatype"] (str): datatype (e.g., "run", "roi") - quantpar (dict) : dictionary with keys of QuantPar namedtuple - sess_info (dict) : dictionary containing information from each session ["mouse_ns"] (list) : mouse numbers ["sess_ns"] (list) : session numbers ["lines"] (list) : mouse lines ["planes"] (list) : imaging planes if extrapar["datatype"] == "roi": ["nrois"] (list) : number of ROIs in session - trace_stats (dict): dictionary containing trace stats information ["xrans"] (list) : time values for the frames, for each session ["all_stats"] (list) : list of 4D arrays or lists of trace data statistics across ROIs for each session, structured as: sess x unexp x quantiles x stats (me, err) x frames ["all_counts"] (array-like): number of sequences, structured as: sess x unexp x quantiles Optional args: - figpar (dict): dictionary containing the following figure parameter dictionaries default: None ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters - savedir (str): path of directory in which to save plots. default: None - modif (bool) : if True, modified (slimmed-down) plots are created instead default: False Returns: - fulldir (str) : final path of the directory in which the figure is saved (may differ from input savedir, if datetime subfolder is added.) - savename (str): name under which the figure is saved """ stimstr_pr = sess_str_util.stim_par_str( stimpar["stimtype"], stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"], "print") statstr_pr = sess_str_util.stat_par_str( analyspar["stats"], analyspar["error"], "print") dendstr_pr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], extrapar["datatype"], "print") sessstr = sess_str_util.sess_par_str( sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"]) dendstr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], extrapar["datatype"]) datatype = extrapar["datatype"] dimstr = sess_str_util.datatype_dim_str(datatype) # extract some info from sess_info keys = ["mouse_ns", "sess_ns", "lines", "planes"] [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys] nroi_strs = sess_str_util.get_nroi_strs(sess_info, empty=(datatype!="roi")) n_sess = len(mouse_ns) xrans = [np.asarray(xran) for xran in trace_stats["xrans"]] all_stats = [np.asarray(sessst) for sessst in trace_stats["all_stats"]] all_counts = trace_stats["all_counts"] cols, lab_cols = sess_plot_util.get_quant_cols(quantpar["n_quants"]) alpha = np.min([0.4, 0.8 / quantpar["n_quants"]]) unexps = ["exp", "unexp"] n = 6 if figpar is None: figpar = sess_plot_util.init_figpar() fig, ax = plot_util.init_fig(n_sess, **figpar["init"]) for i in range(n_sess): sub_ax = plot_util.get_subax(ax, i) for s, [col, leg_ext] in enumerate(zip(cols, unexps)): for q, qu_idx in enumerate(quantpar["qu_idx"]): qu_lab = "" if quantpar["n_quants"] > 1: qu_lab = "{} ".format(sess_str_util.quantile_str( qu_idx, quantpar["n_quants"], str_type="print" )) if modif: line = "2/3" if "23" in lines[i] else "5" plane = "somata" if "soma" in planes[i] else "dendrites" title = f"M{mouse_ns[i]} - layer {line} {plane}{dendstr_pr}" leg = f"{qu_lab}{leg_ext}" if i == 0 else None y_ax = None if i == 0 else "" else: title=(f"Mouse {mouse_ns[i]} - {stimstr_pr}, " u"{}\n".format(statstr_pr) + f"across {dimstr} (sess " f"{sess_ns[i]}, {lines[i]} {planes[i]}{dendstr_pr}" f"{nroi_strs[i]})") leg = f"{qu_lab}{leg_ext} ({all_counts[i][s][q]})" y_ax = None plot_util.plot_traces( sub_ax, xrans[i], all_stats[i][s, q, 0], all_stats[i][s, q, 1:], title, color=col[q], alpha=alpha, label=leg, n_xticks=n, xticks="auto") sess_plot_util.add_axislabels( sub_ax, fluor=analyspar["fluor"], datatype=datatype, y_ax=y_ax) plot_util.turn_off_extra(ax, n_sess) if stimpar["stimtype"] == "gabors": sess_plot_util.plot_labels( ax, stimpar["gabfr"], "both", pre=stimpar["pre"], post=stimpar["post"], cols=lab_cols, sharey=figpar["init"]["sharey"]) if savedir is None: savedir = Path( figpar["dirs"][datatype], figpar["dirs"]["unexp_qu"]) qu_str = f"_{quantpar['n_quants']}q" if quantpar["n_quants"] == 1: qu_str = "" savename = f"{datatype}_av_{sessstr}{dendstr}{qu_str}" fulldir = plot_util.savefig(fig, savename, savedir, **figpar["save"]) return fulldir, savename
def plot_pup_diff_corr(analyspar, sesspar, stimpar, extrapar, sess_info, corr_data, figpar=None, savedir=None): """ plot_pup_diff_corr(analyspar, sesspar, stimpar, extrapar, sess_info, corr_data) From dictionaries, plots correlation between unexpected-locked changes in pupil diameter and running or ROI data for each session. Required args: - analyspar (dict) : dictionary with keys of AnalysPar namedtuple - sesspar (dict) : dictionary with keys of SessPar namedtuple - stimpar (dict) : dictionary with keys of StimPar namedtuple - extrapar (dict) : dictionary containing additional analysis parameters ["analysis"] (str): analysis type (e.g., "c") ["datatype"] (str): datatype (e.g., "run", "roi") - sess_info (dict) : dictionary containing information from each session ["mouse_ns"] (list) : mouse numbers ["sess_ns"] (list) : session numbers ["lines"] (list) : mouse lines ["planes"] (list) : imaging planes ["nrois"] (list) : number of ROIs in session - corr_data (dict) : dictionary containing data to plot: ["corrs"] (list): list of correlation values between pupil and running or ROI differences for each session ["diffs"] (list): list of differences for each session, structured as [pupil, ROI/run] x trials x frames Optional args: - figpar (dict) : dictionary containing the following figure parameter dictionaries default: None ["init"] (dict): dictionary with figure initialization parameters ["save"] (dict): dictionary with figure saving parameters ["dirs"] (dict): dictionary with additional figure parameters - savedir (Path): path of directory in which to save plots. default: None Returns: - fulldir (Path): final path of the directory in which the figure is saved (may differ from input savedir, if datetime subfolder is added.) - savename (str): name under which the figure is saved """ statstr_pr = sess_str_util.stat_par_str( analyspar["stats"], analyspar["error"], "print") stimstr_pr = sess_str_util.stim_par_str( stimpar["stimtype"], stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"], "print") dendstr_pr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], extrapar["datatype"], "print") sessstr = sess_str_util.sess_par_str( sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], stimpar["visflow_dir"],stimpar["visflow_size"], stimpar["gabk"]) dendstr = sess_str_util.dend_par_str( analyspar["dend"], sesspar["plane"], extrapar["datatype"]) datatype = extrapar["datatype"] datastr = sess_str_util.datatype_par_str(datatype) if datatype == "roi": label_str = sess_str_util.fluor_par_str( analyspar["fluor"], str_type="print") full_label_str = u"{}, {} across ROIs".format( label_str, analyspar["stats"]) elif datatype == "run": label_str = datastr full_label_str = datastr lab_app = (f" ({analyspar['stats']} over " f"{stimpar['pre']}/{stimpar['post']} sec)") logger.info(f"Plotting pupil vs {datastr} changes.") delta = "\u0394" # extract some info from sess_info keys = ["mouse_ns", "sess_ns", "lines", "planes"] [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys] n_sess = len(mouse_ns) nroi_strs = sess_str_util.get_nroi_strs( sess_info, empty=(datatype!="roi"), style="comma" ) if figpar is None: figpar = sess_plot_util.init_figpar() figpar = copy.deepcopy(figpar) if figpar["save"]["use_dt"] is None: figpar["save"]["use_dt"] = gen_util.create_time_str() figpar["init"]["sharex"] = False figpar["init"]["sharey"] = False figpar["init"]["ncols"] = n_sess fig, ax = plot_util.init_fig(2 * n_sess, **figpar["init"]) suptitle = (f"Relationship between pupil diam. and {datastr} changes, " "locked to unexpected events") for i, sess_diffs in enumerate(corr_data["diffs"]): sub_axs = ax[:, i] title = (f"Mouse {mouse_ns[i]} - {stimstr_pr}, " + u"{}".format(statstr_pr) + f"\n(sess {sess_ns[i]}, {lines[i]} " f"{planes[i]}{dendstr_pr}{nroi_strs[i]})") # top plot: correlations corr = f"Corr = {corr_data['corrs'][i]:.2f}" sub_axs[0].plot( sess_diffs[0], sess_diffs[1], marker=".", linestyle="None", label=corr) sub_axs[0].set_title(title, y=1.01) sub_axs[0].set_xlabel(u"{} pupil diam.{}".format(delta, lab_app)) if i == 0: sub_axs[0].set_ylabel(u"{} {}\n{}".format( delta, full_label_str, lab_app)) sub_axs[0].legend() # bottom plot: differences across occurrences data_lab = u"{} {}".format(delta, label_str) pup_lab = u"{} pupil diam.".format(delta) cols = [] scaled = [] for d, lab in enumerate([pup_lab, data_lab]): scaled.append(math_util.scale_data( np.asarray(sess_diffs[d]), sc_type="min_max")[0]) art, = sub_axs[1].plot(scaled[-1], marker=".") cols.append(sub_axs[-1].lines[-1].get_color()) if i == n_sess - 1: # only for last graph art.set_label(lab) sub_axs[1].legend() sub_axs[1].set_xlabel("Unexpected event occurrence") if i == 0: sub_axs[1].set_ylabel( u"{} response locked\nto unexpected onset (scaled)".format(delta)) # shade area between lines plot_util.plot_btw_traces( sub_axs[1], scaled[0], scaled[1], color=cols, alpha=0.4) fig.suptitle(suptitle, fontsize="xx-large", y=1) if savedir is None: savedir = Path( figpar["dirs"][datatype], figpar["dirs"]["pupil"]) savename = f"{datatype}_diff_corr_{sessstr}{dendstr}" fulldir = plot_util.savefig(fig, savename, savedir, **figpar["save"]) return fulldir, savename
def run_glms(sessions, analysis, seed, analyspar, sesspar, stimpar, glmpar, figpar, parallel=False): """ run_glms(sessions, analysis, seed, analyspar, sesspar, stimpar, glmpar, figpar) """ seed = rand_util.seed_all(seed, "cpu", log_seed=False) sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype, sesspar.plane, stimpar.visflow_dir, stimpar.visflow_size, stimpar.gabk, "print") dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane, "roi", "print") logger.info( "Analysing and plotting explained variance in ROI activity " f"({sessstr_pr}{dendstr_pr}).", extra={"spacing": "\n"}) if glmpar.each_roi: # must do each session separately glm_type = "per_ROI_per_sess" sess_batches = sessions logger.info("Per ROI, each session separately.") else: glm_type = "across_sess" sess_batches = [sessions] logger.info(f"Across ROIs, {len(sessions)} sessions together.") # optionally runs in parallel, or propagates parallel to next level parallel_here = (parallel and not (glmpar.each_roi) and (len(sess_batches) != 1)) parallel_after = True if (parallel and not (parallel_here)) else False args_list = [analyspar, sesspar, stimpar, glmpar] args_dict = { "parallel": parallel_after, # proactively set next parallel "seed": seed, } all_expl_var = gen_util.parallel_wrap(run_glm, sess_batches, args_list, args_dict, parallel=parallel_here) if glmpar.each_roi: sessions = sess_batches else: sessions = sess_batches[0] sess_info = sess_gen_util.get_sess_info(sessions, analyspar.fluor, rem_bad=analyspar.rem_bad) extrapar = { "analysis": analysis, "seed": seed, "glm_type": glm_type, } info = { "analyspar": analyspar._asdict(), "sesspar": sesspar._asdict(), "stimpar": stimpar._asdict(), "glmpar": glmpar._asdict(), "extrapar": extrapar, "all_expl_var": all_expl_var, "sess_info": sess_info } fulldir, savename = glm_plots.plot_glm_expl_var(figpar=figpar, **info) file_util.saveinfo(info, savename, fulldir, "json") return
def run_pupil_diff_corr(sessions, analysis, analyspar, sesspar, stimpar, figpar, datatype="roi"): """ run_pupil_diff_corr(sessions, analysis, analyspar, sesspar, stimpar, figpar) Calculates and plots between pupil and ROI/running changes locked to each unexpected, as well as the correlation. Saves results and parameters relevant to analysis in a dictionary. Required args: - sessions (list) : list of Session objects - analysis (str) : analysis type (e.g., "c") - analyspar (AnalysPar): named tuple containing analysis parameters - sesspar (SessPar) : named tuple containing session parameters - stimpar (StimPar) : named tuple containing stimulus parameters - figpar (dict) : dictionary containing figure parameters Optional args: - datatype (str): type of data (e.g., "roi", "run") """ sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype, sesspar.plane, stimpar.visflow_dir, stimpar.visflow_size, stimpar.gabk, "print") dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane, datatype, "print") datastr = sess_str_util.datatype_par_str(datatype) logger.info( "Analysing and plotting correlations between unexpected vs " f"expected {datastr} traces between sessions ({sessstr_pr}" f"{dendstr_pr}).", extra={"spacing": "\n"}) sess_diffs = [] sess_corr = [] for sess in sessions: if datatype == "roi" and (sess.only_tracked_rois != analyspar.tracked): raise RuntimeError( "sess.only_tracked_rois should match analyspar.tracked.") diffs = peristim_data(sess, stimpar, datatype=datatype, returns="diff", scale=analyspar.scale, first_unexp=True) [pup_diff, data_diff] = diffs # trials (x ROIs) if datatype == "roi": if analyspar.rem_bad: nanpol = None else: nanpol = "omit" data_diff = math_util.mean_med(data_diff, analyspar.stats, axis=-1, nanpol=nanpol) elif datatype != "run": gen_util.accepted_values_error("datatype", datatype, ["roi", "run"]) sess_corr.append(np.corrcoef(pup_diff, data_diff)[0, 1]) sess_diffs.append([diff.tolist() for diff in [pup_diff, data_diff]]) extrapar = { "analysis": analysis, "datatype": datatype, } corr_data = {"corrs": sess_corr, "diffs": sess_diffs} sess_info = sess_gen_util.get_sess_info(sessions, analyspar.fluor, incl_roi=(datatype == "roi"), rem_bad=analyspar.rem_bad) info = { "analyspar": analyspar._asdict(), "sesspar": sesspar._asdict(), "stimpar": stimpar._asdict(), "extrapar": extrapar, "sess_info": sess_info, "corr_data": corr_data } fulldir, savename = pup_plots.plot_pup_diff_corr(figpar=figpar, **info) file_util.saveinfo(info, savename, fulldir, "json")