Пример #1
0
def run_autocorr(sessions,
                 analysis,
                 analyspar,
                 sesspar,
                 stimpar,
                 autocorrpar,
                 figpar,
                 datatype="roi"):
    """
    run_autocorr(sessions, analysis, analyspar, sesspar, stimpar, autocorrpar, 
                 figpar)

    Calculates and plots autocorrelation during stimulus blocks.
    Saves results and parameters relevant to analysis in a dictionary.

    Required args:
        - sessions (list)          : list of Session objects
        - analysis (str)           : analysis type (e.g., "a")
        - analyspar (AnalysPar)    : named tuple containing analysis parameters
        - sesspar (SessPar)        : named tuple containing session parameters
        - stimpar (StimPar)        : named tuple containing stimulus parameters
        - autocorrpar (AutocorrPar): named tuple containing autocorrelation 
                                     analysis parameters
        - figpar (dict)            : dictionary containing figure parameters

    Optional args:
        - datatype (str): type of data (e.g., "roi", "run")
    """

    sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype,
                                            sesspar.plane, stimpar.visflow_dir,
                                            stimpar.visflow_size, stimpar.gabk,
                                            "print")
    dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane,
                                            datatype, "print")

    datastr = sess_str_util.datatype_par_str(datatype)

    logger.info(
        f"Analysing and plotting {datastr} autocorrelations "
        f"({sessstr_pr}{dendstr_pr}).",
        extra={"spacing": "\n"})

    xrans = []
    stats = []
    for sess in sessions:
        if datatype == "roi" and (sess.only_tracked_rois != analyspar.tracked):
            raise RuntimeError(
                "sess.only_tracked_rois should match analyspar.tracked.")
        stim = sess.get_stim(stimpar.stimtype)
        all_segs = stim.get_segs_by_criteria(visflow_dir=stimpar.visflow_dir,
                                             visflow_size=stimpar.visflow_size,
                                             gabk=stimpar.gabk,
                                             by="block")
        sess_traces = []
        for segs in all_segs:
            if len(segs) == 0:
                continue
            segs = sorted(segs)
            # check that segs are contiguous
            if max(np.diff(segs)) > 1:
                raise NotImplementedError("Segments used for autocorrelation "
                                          "must be contiguous within blocks.")
            if datatype == "roi":
                frame_edges = stim.get_fr_by_seg(
                    [min(segs), max(segs)], fr_type="twop")
                fr = list(range(min(frame_edges[0]), max(frame_edges[1]) + 1))
                traces = gen_util.reshape_df_data(sess.get_roi_traces(
                    fr,
                    fluor=analyspar.fluor,
                    rem_bad=analyspar.rem_bad,
                    scale=analyspar.scale),
                                                  squeeze_cols=True)

            elif datatype == "run":
                if autocorrpar.byitem != False:
                    raise ValueError("autocorrpar.byitem must be False for "
                                     "running data.")
                frame_edges = stim.get_fr_by_seg(
                    [min(segs), max(segs)], fr_type="stim")
                fr = list(range(min(frame_edges[0]), max(frame_edges[1]) + 1))

                traces = sess.get_run_velocity_by_fr(
                    fr,
                    fr_type="stim",
                    rem_bad=analyspar.rem_bad,
                    scale=analyspar.scale).to_numpy().reshape(1, -1)

            sess_traces.append(traces)

        # Calculate autocorr stats while filtering some warnings
        msgs = ["Degrees of freedom", "invalid value encountered"]
        categs = [RuntimeWarning, RuntimeWarning]
        with gen_util.TempWarningFilter(msgs, categs):
            xran, ac_st = math_util.autocorr_stats(sess_traces,
                                                   autocorrpar.lag_s,
                                                   sess.twop_fps,
                                                   byitem=autocorrpar.byitem,
                                                   stats=analyspar.stats,
                                                   error=analyspar.error)

        if not autocorrpar.byitem:  # also add a 10x lag
            lag_fr = 10 * int(autocorrpar.lag_s * sess.twop_fps)
            _, ac_st_10x = math_util.autocorr_stats(sess_traces,
                                                    lag_fr,
                                                    byitem=autocorrpar.byitem,
                                                    stats=analyspar.stats,
                                                    error=analyspar.error)
            downsamp = range(0, ac_st_10x.shape[-1], 10)

            if len(downsamp) != ac_st.shape[-1]:
                raise RuntimeError("Failed to downsample correctly. "
                                   "Check implementation.")
            ac_st = np.stack([ac_st, ac_st_10x[:, downsamp]], axis=1)
        xrans.append(xran)
        stats.append(ac_st)

    autocorr_data = {
        "xrans": [xran.tolist() for xran in xrans],
        "stats": [stat.tolist() for stat in stats]
    }

    sess_info = sess_gen_util.get_sess_info(sessions,
                                            analyspar.fluor,
                                            incl_roi=(datatype == "roi"),
                                            rem_bad=analyspar.rem_bad)

    extrapar = {
        "analysis": analysis,
        "datatype": datatype,
    }

    info = {
        "analyspar": analyspar._asdict(),
        "sesspar": sesspar._asdict(),
        "stimpar": stimpar._asdict(),
        "extrapar": extrapar,
        "autocorrpar": autocorrpar._asdict(),
        "autocorr_data": autocorr_data,
        "sess_info": sess_info
    }

    fulldir, savename = gen_plots.plot_autocorr(figpar=figpar, **info)

    file_util.saveinfo(info, savename, fulldir, "json")
Пример #2
0
def run_trace_corr_acr_sess(sessions,
                            analysis,
                            analyspar,
                            sesspar,
                            stimpar,
                            figpar,
                            datatype="roi"):
    """
    run_trace_corr_acr_sess(sessions, analysis, analyspar, sesspar, 
                            stimpar, quantpar, figpar)

    Retrieves trace statistics by session x unexp val and calculates 
    correlations across sessions per unexp val.
    
    Currently only logs results to the console. Does NOT save results and 
    parameters relevant to analysis in a dictionary.

    Required args:
        - sessions (list)      : list of Session objects
        - analysis (str)       : analysis type (e.g., "r")
        - analyspar (AnalysPar): named tuple containing analysis parameters
        - sesspar (SessPar)    : named tuple containing session parameters
        - stimpar (StimPar)    : named tuple containing stimulus parameters
        - figpar (dict)        : dictionary containing figure parameters
    
    Optional args:
        - datatype (str): type of data (e.g., "roi", "run")
    """

    sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype,
                                            sesspar.plane, stimpar.visflow_dir,
                                            stimpar.visflow_size, stimpar.gabk,
                                            "print")
    # dendstr_pr = sess_str_util.dend_par_str(
    # analyspar.dend, sesspar.plane, datatype, "print")

    datastr = sess_str_util.datatype_par_str(datatype)

    if sesspar.plane in ["any", "all"] and sesspar.runtype == "pilot":
        logger.warning("Planes may not match between sessions for a mouse!")

    logger.info(
        "Analysing and plotting correlations between unexpected vs "
        f"expected {datastr} traces between sessions ({sessstr_pr}).",
        extra={"spacing": "\n"})

    figpar = copy.deepcopy(figpar)
    if figpar["save"]["use_dt"] is None:
        figpar["save"]["use_dt"] = gen_util.create_time_str()

    prev_level = logger.level
    if prev_level > logging.INFO:
        logger.setLevel(logging.INFO)
        logger.warning("Temporarily lowered log level for correlation "
                       "analysis results.")

    unexps = ["exp", "unexp"]

    # correlate average traces between sessions for each mouse and each
    # unexpected value
    all_counts = []
    all_me_tr = []
    all_corrs = []
    logger.info("Intramouse correlations", extra={"spacing": "\n"})
    for sess_grp in sessions:
        logger.info(f"Mouse {sess_grp[0].mouse_n}, sess {sess_grp[0].sess_n} "
                    f"vs {sess_grp[1].sess_n} corr:")
        trace_info = quant_analys.trace_stats_by_qu_sess(sess_grp,
                                                         analyspar,
                                                         stimpar,
                                                         1, [0],
                                                         byroi=False,
                                                         by_exp=True,
                                                         datatype=datatype)
        # remove quant dim
        grp_stats = np.asarray(trace_info[1]).squeeze(2)
        all_counts.append([[qu_c[0] for qu_c in c] for c in trace_info[2]])
        # get mean/median per grp (sess x unexp_val x frame)
        grp_me = grp_stats[:, :, 0]
        grp_corrs = []
        # collect correlations
        corrs = [
            st.pearsonr(grp_me[0, s], grp_me[1, s]) for s in range(len(unexps))
        ]
        corr_max = np.argmax([corr[0] for corr in corrs])
        for s, (unexp, corr) in enumerate(zip(unexps, corrs)):
            sig_str = "*" if corr[1] < 0.05 else ""
            high_str = " +" if corr_max == s else ""
            logger.info(
                f"{unexp}: {corr[0]:.4f} "
                f"(p={corr[1]:.2f}{sig_str}){high_str}",
                extra={"spacing": TAB})
            corr = corr[0]
            grp_corrs.append(corr)
        all_corrs.append(grp_corrs)
        all_me_tr.append(grp_me)

    # mice x sess x unexp x frame
    all_me_tr = np.asarray(all_me_tr)
    logger.info("Intermouse correlations", extra={"spacing": "\n"})
    all_mouse_corrs = []
    for n, m1_sess_mes in enumerate(all_me_tr):
        if n + 1 < len(all_me_tr):
            mouse_corrs = []
            for n_add, m2_sess_mes in enumerate(all_me_tr[n + 1:]):
                sess_corrs = []
                logger.info(f"Mouse {sessions[n][0].mouse_n} vs "
                            f"{sessions[n + 1 + n_add][0].mouse_n} corr:")
                for se, m1_s1_me in enumerate(m1_sess_mes):
                    unexp_corrs = []
                    logger.info(f"sess {sessions[n][se].sess_n}:",
                                extra={"spacing": TAB})
                    # collect correlations
                    corrs = [
                        st.pearsonr(m1_s1_me[s], m2_sess_mes[se][s])
                        for s in range(len(unexps))
                    ]
                    corr_max = np.argmax([corr[0] for corr in corrs])
                    for s, (unexp, corr) in enumerate(zip(unexps, corrs)):
                        sig_str = "*" if corr[1] < 0.05 else ""
                        high_str = " +" if corr_max == s else ""
                        logger.info(
                            f"{unexp}: {corr[0]:.4f} "
                            f"(p={corr[1]:.2f}{sig_str}){high_str}",
                            extra={"spacing": f"{TAB}{TAB}"})
                        corr = corr[0]
                        unexp_corrs.append(corr)
                    sess_corrs.append(unexp_corrs)
                mouse_corrs.append(sess_corrs)
            all_mouse_corrs.append(mouse_corrs)

    # reset logger level
    logger.setLevel(prev_level)
Пример #3
0
def run_traces_by_qu_lock_sess(sessions,
                               analysis,
                               seed,
                               analyspar,
                               sesspar,
                               stimpar,
                               quantpar,
                               figpar,
                               datatype="roi"):
    """
    run_traces_by_qu_lock_sess(sessions, analysis, analyspar, sesspar, 
                               stimpar, quantpar, figpar)

    Retrieves trace statistics by session x quantile at the transition of
    expected to unexpected sequences (or v.v.) and plots traces across ROIs by 
    quantile with each session in a separate subplot.
    
    Also runs analysis for one quantile (full data) with different unexpected 
    lengths grouped separated 
    
    Saves results and parameters relevant to analysis in a dictionary.

    Required args:
        - sessions (list)      : list of Session objects
        - analysis (str)       : analysis type (e.g., "l")
        - seed (int)           : seed value to use. (-1 treated as None)
        - analyspar (AnalysPar): named tuple containing analysis parameters
        - sesspar (SessPar)    : named tuple containing session parameters
        - stimpar (StimPar)    : named tuple containing stimulus parameters
        - quantpar (QuantPar)  : named tuple containing quantile analysis 
                                 parameters
        - figpar (dict)        : dictionary containing figure parameters
    
    Optional args:
        - datatype (str): type of data (e.g., "roi", "run")

    """

    sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype,
                                            sesspar.plane, stimpar.visflow_dir,
                                            stimpar.visflow_size, stimpar.gabk,
                                            "print")
    dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane,
                                            datatype, "print")

    datastr = sess_str_util.datatype_par_str(datatype)

    logger.info(
        f"Analysing and plotting unexpected vs expected {datastr} "
        f"traces locked to unexpected onset by quantile ({quantpar.n_quants}) "
        f"\n({sessstr_pr}{dendstr_pr}).",
        extra={"spacing": "\n"})

    seed = rand_util.seed_all(seed, "cpu", log_seed=False)

    # modify quantpar to retain all quantiles
    quantpar_one = sess_ntuple_util.init_quantpar(1, 0)
    n_quants = quantpar.n_quants
    quantpar_mult = sess_ntuple_util.init_quantpar(n_quants, "all")

    if stimpar.stimtype == "visflow":
        pre_post = [2.0, 6.0]
    elif stimpar.stimtype == "gabors":
        pre_post = [2.0, 8.0]
    else:
        gen_util.accepted_values_error("stimpar.stimtype", stimpar.stimtype,
                                       ["visflow", "gabors"])
    logger.warning("Setting pre to {}s and post to {}s.".format(*pre_post))

    stimpar = sess_ntuple_util.get_modif_ntuple(stimpar, ["pre", "post"],
                                                pre_post)

    figpar = copy.deepcopy(figpar)
    if figpar["save"]["use_dt"] is None:
        figpar["save"]["use_dt"] = gen_util.create_time_str()

    for baseline in [None, stimpar.pre]:
        basestr_pr = sess_str_util.base_par_str(baseline, "print")
        for quantpar in [quantpar_one, quantpar_mult]:
            locks = ["unexp", "exp"]
            if quantpar.n_quants == 1:
                locks.append("unexp_split")
            # get the stats (all) separating by session and quantiles
            for lock in locks:
                logger.info(
                    f"{quantpar.n_quants} quant, {lock} lock{basestr_pr}",
                    extra={"spacing": "\n"})
                if lock == "unexp_split":
                    trace_info = quant_analys.trace_stats_by_exp_len_sess(
                        sessions,
                        analyspar,
                        stimpar,
                        quantpar.n_quants,
                        quantpar.qu_idx,
                        byroi=False,
                        nan_empty=True,
                        baseline=baseline,
                        datatype=datatype)
                else:
                    trace_info = quant_analys.trace_stats_by_qu_sess(
                        sessions,
                        analyspar,
                        stimpar,
                        quantpar.n_quants,
                        quantpar.qu_idx,
                        byroi=False,
                        lock=lock,
                        nan_empty=True,
                        baseline=baseline,
                        datatype=datatype)

                # for comparison, locking to middle of expected sample (1 quant)
                exp_samp = quant_analys.trace_stats_by_qu_sess(
                    sessions,
                    analyspar,
                    stimpar,
                    quantpar_one.n_quants,
                    quantpar_one.qu_idx,
                    byroi=False,
                    lock="exp_samp",
                    nan_empty=True,
                    baseline=baseline,
                    datatype=datatype)

                extrapar = {
                    "analysis": analysis,
                    "datatype": datatype,
                    "seed": seed,
                }

                xrans = [xran.tolist() for xran in trace_info[0]]
                all_stats = [sessst.tolist() for sessst in trace_info[1]]
                exp_stats = [expst.tolist() for expst in exp_samp[1]]
                trace_stats = {
                    "xrans": xrans,
                    "all_stats": all_stats,
                    "all_counts": trace_info[2],
                    "lock": lock,
                    "baseline": baseline,
                    "exp_stats": exp_stats,
                    "exp_counts": exp_samp[2]
                }

                if lock == "unexp_split":
                    trace_stats["unexp_lens"] = trace_info[3]

                sess_info = sess_gen_util.get_sess_info(
                    sessions,
                    analyspar.fluor,
                    incl_roi=(datatype == "roi"),
                    rem_bad=analyspar.rem_bad)

                info = {
                    "analyspar": analyspar._asdict(),
                    "sesspar": sesspar._asdict(),
                    "stimpar": stimpar._asdict(),
                    "quantpar": quantpar._asdict(),
                    "extrapar": extrapar,
                    "sess_info": sess_info,
                    "trace_stats": trace_stats
                }

                fulldir, savename = gen_plots.plot_traces_by_qu_lock_sess(
                    figpar=figpar, **info)
                file_util.saveinfo(info, savename, fulldir, "json")
Пример #4
0
def run_mag_change(sessions,
                   analysis,
                   seed,
                   analyspar,
                   sesspar,
                   stimpar,
                   permpar,
                   quantpar,
                   figpar,
                   datatype="roi"):
    """
    run_mag_change(sessions, analysis, seed, analyspar, sesspar, stimpar, 
                   permpar, quantpar, figpar)

    Calculates and plots the magnitude of change in activity of ROIs between 
    the first and last quantile for expected vs unexpected sequences.
    Saves results and parameters relevant to analysis in a dictionary.

    Required args:
        - sessions (list)      : list of Session objects
        - analysis (str)       : analysis type (e.g., "m")
        - seed (int)           : seed value to use. (-1 treated as None) 
        - analyspar (AnalysPar): named tuple containing analysis parameters
        - sesspar (SessPar)    : named tuple containing session parameters
        - stimpar (StimPar)    : named tuple containing stimulus parameters
        - permpar (PermPar)    : named tuple containing permutation parameters
        - quantpar (QuantPar)  : named tuple containing quantile analysis 
                                 parameters
        - figpar (dict)        : dictionary containing figure parameters   

    Optional args:
        - datatype (str): type of data (e.g., "roi", "run") 
    """

    sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype,
                                            sesspar.plane, stimpar.visflow_dir,
                                            stimpar.visflow_size, stimpar.gabk,
                                            "print")
    dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane,
                                            datatype, "print")

    datastr = sess_str_util.datatype_par_str(datatype)

    logger.info(
        f"Calculating and plotting the magnitude changes in {datastr} "
        f"activity across quantiles \n({sessstr_pr}{dendstr_pr}).",
        extra={"spacing": "\n"})

    if permpar.multcomp:
        permpar = sess_ntuple_util.get_modif_ntuple(permpar, "multcomp",
                                                    len(sessions))

    # get full data: session x unexp x quants of interest x [ROI x seq]
    integ_info = quant_analys.trace_stats_by_qu_sess(sessions,
                                                     analyspar,
                                                     stimpar,
                                                     quantpar.n_quants,
                                                     quantpar.qu_idx,
                                                     by_exp=True,
                                                     integ=True,
                                                     ret_arr=True,
                                                     datatype=datatype)
    all_counts = integ_info[-2]
    qu_data = integ_info[-1]

    # extract session info
    mouse_ns = [sess.mouse_n for sess in sessions]
    lines = [sess.line for sess in sessions]

    if analyspar.rem_bad:
        nanpol = None
    else:
        nanpol = "omit"

    seed = rand_util.seed_all(seed, "cpu", log_seed=False)

    mags = quant_analys.qu_mags(qu_data,
                                permpar,
                                mouse_ns,
                                lines,
                                analyspar.stats,
                                analyspar.error,
                                nanpol=nanpol,
                                op_qu="diff",
                                op_unexp="diff")

    # convert mags items to list
    mags = copy.deepcopy(mags)
    mags["all_counts"] = all_counts
    for key in ["mag_st", "L2", "mag_rel_th", "L2_rel_th"]:
        mags[key] = mags[key].tolist()

    sess_info = sess_gen_util.get_sess_info(sessions,
                                            analyspar.fluor,
                                            incl_roi=(datatype == "roi"),
                                            rem_bad=analyspar.rem_bad)

    extrapar = {"analysis": analysis, "datatype": datatype, "seed": seed}

    info = {
        "analyspar": analyspar._asdict(),
        "sesspar": sesspar._asdict(),
        "stimpar": stimpar._asdict(),
        "extrapar": extrapar,
        "permpar": permpar._asdict(),
        "quantpar": quantpar._asdict(),
        "mags": mags,
        "sess_info": sess_info
    }

    fulldir, savename = gen_plots.plot_mag_change(figpar=figpar, **info)

    file_util.saveinfo(info, savename, fulldir, "json")
Пример #5
0
def plot_glm_expl_var(analyspar, sesspar, stimpar, extrapar, glmpar,
                      sess_info, all_expl_var, figpar=None, savedir=None):
    """
    plot_glm_expl_var(analyspar, sesspar, stimpar, extrapar, 
                       sess_info, all_expl_var)

    From dictionaries, plots explained variance for different variables for 
    each ROI.

    Required args:
        - analyspar (dict)    : dictionary with keys of AnalysPar namedtuple
        - sesspar (dict)      : dictionary with keys of SessPar namedtuple 
        - stimpar (dict)      : dictionary with keys of StimPar namedtuple
        - glmpar (dict)       : dictionary with keys of GLMPar namedtuple
        - extrapar (dict)     : dictionary containing additional analysis 
                                parameters
            ["analysis"] (str): analysis type (e.g., "v")
        - sess_info (dict)    : dictionary containing information from each
                                session 
            ["mouse_ns"] (list)   : mouse numbers
            ["sess_ns"] (list)    : session numbers  
            ["lines"] (list)      : mouse lines
            ["planes"] (list)     : imaging planes
            ["nrois"] (list)      : number of ROIs in session

        - all_expl_var (list) : list of dictionaries with explained variance 
                                for each session set, with each glm 
                                coefficient as a key:
            ["full"] (list)    : list of full explained variance stats for 
                                 every ROI, structured as ROI x stats
            ["coef_all"] (dict): max explained variance for each ROI with each
                                 coefficient as a key, structured as ROI x stats
            ["coef_uni"] (dict): unique explained variance for each ROI with 
                                 each coefficient as a key, 
                                 structured as ROI x stats
            ["rois"] (list)    : ROI numbers (-1 for GLMs fit to 
                                 mean/median ROI activity)
    
    Optional args:
        - figpar (dict): dictionary containing the following figure parameter 
                         dictionaries
                         default: None
            ["init"] (dict): dictionary with figure initialization parameters
            ["save"] (dict): dictionary with figure saving parameters
            ["dirs"] (dict): dictionary with additional figure parameters
        - savedir (str): path of directory in which to save plots.
                         default: None
    
    Returns:
        - fulldir (str) : final path of the directory in which the figure is 
                          saved (may differ from input savedir, if datetime 
                          subfolder is added.)
        - savename (str): name under which the figure is saved
    """

    stimstr_pr = sess_str_util.stim_par_str(
        stimpar["stimtype"], stimpar["visflow_dir"], stimpar["visflow_size"], 
        stimpar["gabk"], "print")
    dendstr_pr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], "roi", "print")

    sessstr = sess_str_util.sess_par_str(
        sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], 
        stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"]) 
    dendstr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], "roi")

    # extract some info from sess_info
    keys = ["mouse_ns", "sess_ns", "lines", "planes"]
    [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys]

    n_sess = len(mouse_ns)
    
    nroi_strs = sess_str_util.get_nroi_strs(sess_info, style="par")

    plot_bools = [ev["rois"] not in [[-1], "all"] for ev in all_expl_var]
    n_sess = sum(plot_bools)

    if stimpar["stimtype"] == "gabors":
        xyzc_dims = ["unexpected", "gabor_frame", "run_data", "pup_diam_data"]
        log_dims = xyzc_dims + ["gabor_mean_orientation"]
    elif stimpar["stimtype"] == "visflow":
        xyzc_dims = [
            "unexpected", "main_flow_direction", "run_data", "pup_diam_data"
            ]
        log_dims = xyzc_dims
    
    # start plotting
    logger.info("Plotting GLM full and unique explained variance for "
        f"{', '.join(xyzc_dims)}.", extra={"spacing": "\n"})

    if n_sess > 0:
        if figpar is None:
            figpar = sess_plot_util.init_figpar()

        figpar = copy.deepcopy(figpar)
        cmap = plot_util.linclab_colormap(nbins=100, no_white=True)

        if figpar["save"]["use_dt"] is None:
            figpar["save"]["use_dt"] = gen_util.create_time_str()
        figpar["init"]["ncols"] = n_sess
        figpar["init"]["sharex"] = False
        figpar["init"]["sharey"] = False
        figpar["init"]["gs"] = {"wspace": 0.2, "hspace": 0.35}
        figpar["save"]["fig_ext"] = "png"
        
        fig, ax = plot_util.init_fig(2 * n_sess, **figpar["init"], proj="3d")

        fig.suptitle("Explained variance per ROI", y=1)

        # get colormap range
        c_range = [np.inf, -np.inf]
        c_key = xyzc_dims[3]

        for expl_var in all_expl_var:
            for var_type in ["coef_all", "coef_uni"]:
                rs = np.where(np.asarray(expl_var["rois"]) != -1)[0]
                if c_key in expl_var[var_type].keys():
                    c_data = np.asarray(expl_var[var_type][c_key])[rs, 0]
                    # adjust colormap range
                    c_range[0] = np.min([c_range[0], min(c_data)])
                    c_range[1] = np.max([c_range[1], max(c_data)])
        
        if not np.isfinite(sum(c_range)):
            c_range = [-0.5, 0.5] # dummy range
        else:
            c_range = plot_util.rounded_lims(c_range, out=True)

    else:
        logger.info("No plots, as only results across ROIs are included")
        fig = None

    i = 0
    for expl_var in all_expl_var:
        # collect info for plotting and logging results across ROIs
        rs = np.where(np.asarray(expl_var["rois"]) != -1)[0]
        all_rs = np.where(np.asarray(expl_var["rois"]) == -1)[0]
        if len(all_rs) != 1:
            raise RuntimeError("Expected only one result for all ROIs.")
        else:
            all_rs = all_rs[0]
            full_ev = expl_var["full"][all_rs]

        title = (f"Mouse {mouse_ns[i]} - {stimstr_pr}\n(sess {sess_ns[i]}, "
                f"{lines[i]} {planes[i]}{dendstr_pr},{nroi_strs[i]})")
        logger.info(title, extra={"spacing": "\n"})

        math_util.log_stats(full_ev, stat_str="\nFull explained variance")

        dim_length = max([len(dim) for dim in log_dims])
        
        for v, var_type in enumerate(["coef_all", "coef_uni"]):
            if var_type == "coef_all":
                sub_title = "Explained variance per coefficient"
            elif var_type == "coef_uni":
                sub_title = "Unique explained variance\nper coefficient"
            logger.info(sub_title, extra={"spacing": "\n"})

            dims_all = []
            for key in log_dims:
                if key in xyzc_dims:
                    # get mean/med
                    if key not in expl_var[var_type].keys():
                        dims_all.append("dummy")
                        continue

                    dims_all.append(np.asarray(expl_var[var_type][key])[rs, 0])
                math_util.log_stats(
                    expl_var[var_type][key][all_rs], 
                    stat_str=key.ljust(dim_length), log_spacing=TAB
                    )

            if not plot_bools[-1]:
                continue

            if v == 0:
                y = 1.12
                subpl_title = f"{title}\n{sub_title}"
            else:
                y = 1.02
                subpl_title = sub_title

            # retrieve values and names for each dimension, including dummy 
            # dimensions
            use_xyzc_dims = []
            n_vals = None
            dummies = []
            pads = [16, 16, 20]
            for d, dim in enumerate(dims_all):
                dim_name = xyzc_dims[d].replace("_", " ")
                if " direction"  in dim_name:
                    dim_name = dim_name.replace(" direction", "\ndirection")
                    pads[d] = 24
                if isinstance(dim, str) and dim == "dummy":
                    dummies.append(d)
                    use_xyzc_dims.append(f"{dim_name} (dummy)")
                else:
                    n_vals = len(dim)
                    use_xyzc_dims.append(dim_name)
            
            for d in dummies:
                dims_all[d] = np.zeros(n_vals)

            [x_data, y_data, z_data, c_data] = dims_all

            sub_ax = ax[v, i]
            im = sub_ax.scatter(
                x_data, y_data, z_data, c=c_data, cmap=cmap, 
                vmin=c_range[0], vmax=c_range[1]
                )
            sub_ax.set_title(subpl_title, y=y)
            # sub_ax.set_zlim3d(0, 1.0)

            # adjust padding for z axis
            sub_ax.tick_params(axis='z', which='major', pad=10)

            # add labels
            sub_ax.set_xlabel(use_xyzc_dims[0], labelpad=pads[0])
            sub_ax.set_ylabel(use_xyzc_dims[1], labelpad=pads[1])
            sub_ax.set_zlabel(use_xyzc_dims[2], labelpad=pads[2])

            if v == 0:
                full_ev_lab = math_util.log_stats(
                    full_ev, stat_str="Full EV", ret_str_only=True
                    )
                sub_ax.plot([], [], c="k", label=full_ev_lab)
                sub_ax.legend()

        i += 1

    if fig is not None:
        plot_util.add_colorbar(
            fig, im, n_sess, label=use_xyzc_dims[3],
            space_fact=np.max([2, n_sess])
            )

        # plot 0 planes, and lines
        for sub_ax in ax.reshape(-1):
            sub_ax.autoscale(False)
            all_lims = [sub_ax.get_xlim(), sub_ax.get_ylim(), sub_ax.get_zlim()]
            xs, ys, zs = [
                [vs[0] - (vs[1] - vs[0]) * 0.02, vs[1] + (vs[1] - vs[0]) * 0.02]
                for vs in all_lims
                ]
            
            for plane in ["x", "y", "z"]:
                if plane == "x":
                    xx, yy = np.meshgrid(xs, ys)
                    zz = xx * 0
                    x_flat = xs
                    y_flat, z_flat = [0, 0], [0, 0]
                elif plane == "y":
                    yy, zz = np.meshgrid(ys, zs)
                    xx = yy * 0
                    y_flat = ys
                    z_flat, x_flat = [0, 0], [0, 0]
                elif plane == "z":
                    zz, xx = np.meshgrid(zs, xs)
                    yy = zz * 0
                    z_flat = zs
                    x_flat, y_flat = [0, 0], [0, 0]
                
                sub_ax.plot_surface(xx, yy, zz, alpha=0.05, color="k")
                sub_ax.plot(
                    x_flat, y_flat, z_flat, alpha=0.4, color="k", ls=(0, (2, 2))
                    )

    if savedir is None:
        savedir = Path(
            figpar["dirs"]["roi"],
            figpar["dirs"]["glm"])

    savename = (f"roi_glm_ev_{sessstr}{dendstr}")

    fulldir = plot_util.savefig(fig, savename, savedir, **figpar["save"])

    return fulldir, savename                              
Пример #6
0
def run_traces_by_qu_unexp_sess(sessions,
                                analysis,
                                analyspar,
                                sesspar,
                                stimpar,
                                quantpar,
                                figpar,
                                datatype="roi"):
    """
    run_traces_by_qu_unexp_sess(sessions, analysis, analyspar, sesspar, 
                               stimpar, quantpar, figpar)

    Retrieves trace statistics by session x unexp val x quantile and
    plots traces across ROIs by quantile/unexpected with each session in a 
    separate subplot.
    
    Also runs analysis for one quantile (full data).
    
    Saves results and parameters relevant to analysis in a dictionary.

    Required args:
        - sessions (list)      : list of Session objects
        - analysis (str)       : analysis type (e.g., "t")
        - analyspar (AnalysPar): named tuple containing analysis parameters
        - sesspar (SessPar)    : named tuple containing session parameters
        - stimpar (StimPar)    : named tuple containing stimulus parameters
        - quantpar (QuantPar)  : named tuple containing quantile analysis 
                                 parameters
        - figpar (dict)        : dictionary containing figure parameters
    
    Optional args:
        - datatype (str): type of data (e.g., "roi", "run")
    """

    sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype,
                                            sesspar.plane, stimpar.visflow_dir,
                                            stimpar.visflow_size, stimpar.gabk,
                                            "print")
    dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane,
                                            datatype, "print")

    datastr = sess_str_util.datatype_par_str(datatype)

    logger.info(
        f"Analysing and plotting unexpected vs expected {datastr} "
        f"traces by quantile ({quantpar.n_quants}) \n({sessstr_pr}"
        f"{dendstr_pr}).",
        extra={"spacing": "\n"})

    # modify quantpar to retain all quantiles
    quantpar_one = sess_ntuple_util.init_quantpar(1, 0)
    n_quants = quantpar.n_quants
    quantpar_mult = sess_ntuple_util.init_quantpar(n_quants, "all")

    figpar = copy.deepcopy(figpar)
    if figpar["save"]["use_dt"] is None:
        figpar["save"]["use_dt"] = gen_util.create_time_str()

    for quantpar in [quantpar_one, quantpar_mult]:
        logger.info(f"{quantpar.n_quants} quant", extra={"spacing": "\n"})
        # get the stats (all) separating by session, unexpected and quantiles
        trace_info = quant_analys.trace_stats_by_qu_sess(sessions,
                                                         analyspar,
                                                         stimpar,
                                                         quantpar.n_quants,
                                                         quantpar.qu_idx,
                                                         byroi=False,
                                                         by_exp=True,
                                                         datatype=datatype)

        extrapar = {
            "analysis": analysis,
            "datatype": datatype,
        }

        xrans = [xran.tolist() for xran in trace_info[0]]
        all_stats = [sessst.tolist() for sessst in trace_info[1]]
        trace_stats = {
            "xrans": xrans,
            "all_stats": all_stats,
            "all_counts": trace_info[2]
        }

        sess_info = sess_gen_util.get_sess_info(sessions,
                                                analyspar.fluor,
                                                incl_roi=(datatype == "roi"),
                                                rem_bad=analyspar.rem_bad)

        info = {
            "analyspar": analyspar._asdict(),
            "sesspar": sesspar._asdict(),
            "stimpar": stimpar._asdict(),
            "quantpar": quantpar._asdict(),
            "extrapar": extrapar,
            "sess_info": sess_info,
            "trace_stats": trace_stats
        }

        fulldir, savename = gen_plots.plot_traces_by_qu_unexp_sess(
            figpar=figpar, **info)
        file_util.saveinfo(info, savename, fulldir, "json")
Пример #7
0
def plot_mag_change(analyspar, sesspar, stimpar, extrapar, permpar, quantpar, 
                    sess_info, mags, figpar=None, savedir=None):
    """
    plot_mag_change(analyspar, sesspar, stimpar, extrapar, permpar, quantpar, 
                    sess_info, mags) 

    From dictionaries, plots magnitude of change in unexpected and expected
    responses across quantiles.

    Returns figure name and save directory path.

    Required args:
        - analyspar (dict): dictionary with keys of AnalysPar namedtuple
        - sesspar (dict)  : dictionary with keys of SessPar namedtuple 
        - stimpar (dict)  : dictionary with keys of StimPar namedtuple
        - extrapar (dict) : dictionary containing additional analysis 
                            parameters
            ["analysis"] (str): analysis type (e.g., "m")
            ["datatype"] (str): datatype (e.g., "run", "roi")
            ["seed"]     (int): seed value used
        - permpar (dict)  : dictionary with keys of PermPar namedtuple 
        - quantpar (dict) : dictionary with keys of QuantPar namedtuple
        - roigrppar (dict): dictionary with keys of RoiGrpPar namedtuple
        - sess_info (dict): dictionary containing information from each
                            session 
            ["mouse_ns"] (list)   : mouse numbers
            ["sess_ns"] (list)    : session numbers  
            ["lines"] (list)      : mouse lines
            ["planes"] (list)     : imaging planes
            ["nrois"] (list)      : number of ROIs in session

        - mags (dict)     : dictionary containing magnitude data to plot
            ["L2"] (array-like)    : nested list containing L2 norms, 
                                     structured as: 
                                         sess x scaling x unexp
            ["L2_sig"] (list)      : L2 significance results for each session 
                                         ("hi", "lo" or "no")
            ["mag_sig"] (list)     : magnitude significance results for each 
                                     session 
                                         ("hi", "lo" or "no")
            ["mag_st"] (array-like): array or nested list containing magnitude 
                                     stats across ROIs, structured as: 
                                         sess x scaling x unexp x stats

    Optional args:
        - figpar (dict): dictionary containing the following figure parameter 
                         dictionaries
                         default: None
            ["init"] (dict): dictionary with figure initialization parameters
            ["save"] (dict): dictionary with figure saving parameters
            ["dirs"] (dict): dictionary with additional figure parameters
        - savedir (str): path of directory in which to save plots.
                         default: None
    
    Returns:
        - fulldir (str) : final path of the directory in which the figure is 
                          saved (may differ from input savedir, if datetime 
                          subfolder is added.)
        - savename (str): name under which the figure is saved
    """
    
    sessstr_pr = sess_str_util.sess_par_str(
        sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], 
        stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"], 
        "print")
    statstr_pr = sess_str_util.stat_par_str(
        analyspar["stats"], analyspar["error"], "print")
    dendstr_pr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], extrapar["datatype"], "print")
        
    sessstr = sess_str_util.sess_par_str(
        sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], 
        stimpar["visflow_dir"],stimpar["visflow_size"], stimpar["gabk"]) 
    dendstr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], extrapar["datatype"])
     
    datatype = extrapar["datatype"]
    dimstr = sess_str_util.datatype_dim_str(datatype)
    
    # extract some info from sess_info
    keys = ["mouse_ns", "sess_ns", "lines", "planes"]
    [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys]
    nroi_strs = sess_str_util.get_nroi_strs(
        sess_info, empty=(datatype!="roi"), style="par"
        )    

    n_sess = len(mouse_ns)

    qu_ns = [gen_util.pos_idx(q, quantpar["n_quants"]) + 1 
        for q in quantpar["qu_idx"]]
    if len(qu_ns) != 2:
        raise ValueError(f"Expected 2 quantiles, not {len(qu_ns)}.")
    
    mag_st = np.asarray(mags["mag_st"])

    if figpar is None:
        figpar = sess_plot_util.init_figpar()

    figpar = copy.deepcopy(figpar)
    if figpar["save"]["use_dt"] is None:
        figpar["save"]["use_dt"] = gen_util.create_time_str()
 
    figpar["init"]["subplot_wid"] *= n_sess/2.0
    
    scales = [False, True]

    # get plot elements
    barw = 0.75
    # scaling strings for printing and filenames
    leg = ["exp", "unexp"]    
    cent, bar_pos, xlims = plot_util.get_barplot_xpos(n_sess, len(leg), barw)   
    title = (u"Magnitude ({}) of difference in activity".format(statstr_pr) +
        f"\nbetween Q{qu_ns[0]} and {qu_ns[1]} across {dimstr} "
        f"\n({sessstr_pr})")
    labels = [f"Mouse {mouse_ns[i]} sess {sess_ns[i]},\n {lines[i]} {planes[i]}"
        f"{dendstr_pr}{nroi_strs[i]}" for i in range(n_sess)]

    figs, axs = [], []
    for sc, scale in enumerate(scales):
        scalestr_pr = sess_str_util.scale_par_str(scale, "print")
        fig, ax = plot_util.init_fig(1, **figpar["init"])
        figs.append(fig)
        axs.append(ax)
        sub_ax = ax[0, 0]
        # always set ticks (even again) before setting labels
        sub_ax.set_xticks(cent)
        sub_ax.set_xticklabels(labels)
        title_scale = u"{}{}".format(title, scalestr_pr)
        sess_plot_util.add_axislabels(
            sub_ax, fluor=analyspar["fluor"], area=True, scale=scale, x_ax="", 
            datatype=datatype)
        for s, lab in enumerate(leg):
            xpos = list(zip(*bar_pos))[s]
            plot_util.plot_bars(
                sub_ax, xpos, mag_st[:, sc, s, 0], err=mag_st[:, sc, s, 1:], 
                width=barw, xlims=xlims, xticks="None", label=lab, capsize=4,
                title=title_scale, hline=0)
    
    # add significance markers
    for i in range(n_sess):
        signif = mags["mag_sig"][i]
        if signif in ["hi", "lo"]:
            xpos = bar_pos[i]
            for sc, (ax, scale) in enumerate(zip(axs, scales)):
                yval = mag_st[i, sc, :, 0]
                yerr = mag_st[i, sc, :, 1:]
                plot_util.plot_barplot_signif(ax[0, 0], xpos, yval, yerr)
    
    plot_util.turn_off_extra(ax, n_sess)

   # figure directory
    if savedir is None:
        savedir = Path(
            figpar["dirs"][datatype], 
            figpar["dirs"]["unexp_qu"], 
            figpar["dirs"]["mags"])
    
    log_dir = False
    for i, (fig, scale) in enumerate(zip(figs, scales)):
        if i == len(figs) - 1:
            log_dir = True
        scalestr = sess_str_util.scale_par_str(scale)
        savename = f"{datatype}_mag_diff_{sessstr}{dendstr}"
        savename_full = f"{savename}{scalestr}"
        fulldir = plot_util.savefig(
            fig, savename_full, savedir, log_dir=log_dir, ** figpar["save"])

    return fulldir, savename
Пример #8
0
def plot_autocorr(analyspar, sesspar, stimpar, extrapar, autocorrpar, 
                  sess_info, autocorr_data, figpar=None, savedir=None):
    """
    plot_autocorr(analyspar, sesspar, stimpar, extrapar, autocorrpar, 
                  sess_info, autocorr_data)

    From dictionaries, plots autocorrelation during stimulus blocks.

    Required args:
        - analyspar (dict)    : dictionary with keys of AnalysPar namedtuple
        - sesspar (dict)      : dictionary with keys of SessPar namedtuple 
        - stimpar (dict)      : dictionary with keys of StimPar namedtuple
        - extrapar (dict)     : dictionary containing additional analysis 
                                parameters
            ["analysis"] (str): analysis type (e.g., "a")
            ["datatype"] (str): datatype (e.g., "run", "roi")
        - autocorrpar (dict)  : dictionary with keys of AutocorrPar namedtuple
        - sess_info (dict)    : dictionary containing information from each
                                session 
            ["mouse_ns"] (list)   : mouse numbers
            ["sess_ns"] (list)    : session numbers  
            ["lines"] (list)      : mouse lines
            ["planes"] (list)     : imaging planes
            ["nrois"] (list)      : number of ROIs in session

        - autocorr_data (dict): dictionary containing data to plot:
            ["xrans"] (list): list of lag values in seconds for each session
            ["stats"] (list): list of 3D arrays (or nested lists) of
                              autocorrelation statistics, structured as:
                                     sessions stats (me, err) 
                                     x ROI or 1x and 10x lag 
                                     x lag
    
    Optional args:
        - figpar (dict): dictionary containing the following figure parameter 
                         dictionaries
                         default: None
            ["init"] (dict): dictionary with figure initialization parameters
            ["save"] (dict): dictionary with figure saving parameters
            ["dirs"] (dict): dictionary with additional figure parameters
        - savedir (str): path of directory in which to save plots.
                         default: None
    
    Returns:
        - fulldir (str) : final path of the directory in which the figure is 
                          saved (may differ from input savedir, if datetime 
                          subfolder is added.)
        - savename (str): name under which the figure is saved
    """


    statstr_pr = sess_str_util.stat_par_str(
        analyspar["stats"], analyspar["error"], "print")
    stimstr_pr = sess_str_util.stim_par_str(
        stimpar["stimtype"], stimpar["visflow_dir"], stimpar["visflow_size"], 
        stimpar["gabk"], "print")
    dendstr_pr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], extrapar["datatype"], "print")

    sessstr = sess_str_util.sess_par_str(
        sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], 
        stimpar["visflow_dir"],stimpar["visflow_size"], stimpar["gabk"]) 
    dendstr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], extrapar["datatype"])
     
    datatype = extrapar["datatype"]
    if datatype == "roi":
        fluorstr_pr = sess_str_util.fluor_par_str(
            analyspar["fluor"], str_type="print")
        if autocorrpar["byitem"]:
            title_str = u"{}\nautocorrelation".format(fluorstr_pr)
        else:
            title_str = "\nautocorr. acr. ROIs" .format(fluorstr_pr)

    elif datatype == "run":
        datastr = sess_str_util.datatype_par_str(datatype)
        title_str = u"\n{} autocorrelation".format(datastr)

    if stimpar["stimtype"] == "gabors":
        seq_bars = [-1.5, 1.5] # light lines
    else:
        seq_bars = [-1.0, 1.0] # light lines

    # extract some info from sess_info
    keys = ["mouse_ns", "sess_ns", "lines", "planes"]
    [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys]
    nroi_strs = sess_str_util.get_nroi_strs(sess_info, empty=(datatype!="roi")) 

    n_sess = len(mouse_ns)

    xrans = autocorr_data["xrans"]
    stats = [np.asarray(stat) for stat in autocorr_data["stats"]]

    lag_s = autocorrpar["lag_s"]
    xticks = np.linspace(-lag_s, lag_s, lag_s*2+1)
    yticks = np.linspace(0, 1, 6)

    if figpar is None:
        figpar = sess_plot_util.init_figpar()

    byitemstr = ""
    if autocorrpar["byitem"]:
        byitemstr = "_byroi"

    fig, ax = plot_util.init_fig(n_sess, **figpar["init"])
    for i in range(n_sess):
        sub_ax = plot_util.get_subax(ax, i)
        title = (f"Mouse {mouse_ns[i]} - {stimstr_pr}, "
            u"{} ".format(statstr_pr) + f"{title_str} (sess "
            f"{sess_ns[i]}, {lines[i]} {planes[i]}{dendstr_pr}{nroi_strs[i]})")
        # transpose to ROI/lag x stats x series
        sess_stats = stats[i].transpose(1, 0, 2) 
        for s, sub_stats in enumerate(sess_stats):
            lab = None
            if not autocorrpar["byitem"]:
                lab = ["actual lag", "10x lag"][s]

            plot_util.plot_traces(
                sub_ax, xrans[i], sub_stats[0], sub_stats[1:], xticks=xticks, 
                yticks=yticks, alpha=0.2, label=lab)

        plot_util.add_bars(sub_ax, hbars=seq_bars)
        sub_ax.set_ylim([0, 1])
        sub_ax.set_title(title, y=1.02)
        if sub_ax.is_last_row():
            sub_ax.set_xlabel("Lag (s)")

    plot_util.turn_off_extra(ax, n_sess)

    if savedir is None:
        savedir = Path(
            figpar["dirs"][datatype], 
            figpar["dirs"]["autocorr"])

    savename = (f"{datatype}_autocorr{byitemstr}_{sessstr}{dendstr}")

    fulldir = plot_util.savefig(fig, savename, savedir, **figpar["save"])

    return fulldir, savename
Пример #9
0
def plot_traces_by_qu_lock_sess(analyspar, sesspar, stimpar, extrapar, 
                                quantpar, sess_info, trace_stats, 
                                figpar=None, savedir=None, modif=False):
    """
    plot_traces_by_qu_lock_sess(analyspar, sesspar, stimpar, extrapar, 
                                quantpar, sess_info, trace_stats)

    From dictionaries, plots traces by quantile, locked to transitions from 
    unexpected to expected or v.v. with each session in a separate subplot.
    
    Returns figure name and save directory path.
    
    Required args:
        - analyspar (dict)  : dictionary with keys of AnalysPar namedtuple
        - sesspar (dict)    : dictionary with keys of SessPar namedtuple
        - stimpar (dict)    : dictionary with keys of StimPar namedtuple
        - extrapar (dict)   : dictionary containing additional analysis 
                              parameters
            ["analysis"] (str): analysis type (e.g., "l")
            ["datatype"] (str): datatype (e.g., "run", "roi")
        - quantpar (dict)   : dictionary with keys of QuantPar namedtuple
        - sess_info (dict)  : dictionary containing information from each
                              session 
            ["mouse_ns"] (list)   : mouse numbers
            ["sess_ns"] (list)    : session numbers  
            ["lines"] (list)      : mouse lines
            ["planes"] (list)     : imaging planes
            if datatype == 
            ["nrois"] (list)      : number of ROIs in session

        - trace_stats (dict): dictionary containing trace stats information
            ["xrans"] (list)           : time values for the 2p frames for each 
                                         session
            ["all_stats"] (list)       : list of 4D arrays or lists of trace 
                                         data statistics across ROIs for each 
                                         session, structured as:
                                            (unexp_len x) quantiles x
                                            stats (me, err) x frames
            ["all_counts"] (array-like): number of sequences, structured as:
                                                sess x (unexp_len x) quantiles
            ["lock"] (str)             : value to which segments are locked:
                                         "unexp", "exp" or "unexp_split"
            ["baseline"] (num)         : number of seconds used for baseline
            ["exp_stats"] (list)       : list of 3D arrays or lists of trace 
                                         data statistics across ROIs for
                                         expected sampled sequences, 
                                         structured as:
                                            quantiles (1) x stats (me, err) 
                                            x frames
            ["exp_counts"] (array-like): number of sequences corresponding to
                                         exp_stats, structured as:
                                            sess x quantiles (1)
            
            if data is by unexp_len:
            ["unexp_lens"] (list)       : number of consecutive segments for
                                         each unexp_len, structured by session
                
    Optional args:
        - figpar (dict): dictionary containing the following figure parameter 
                         dictionaries
                         default: None
            ["init"] (dict): dictionary with figure initialization parameters
            ["save"] (dict): dictionary with figure saving parameters
            ["dirs"] (dict): dictionary with additional figure parameters
        - savedir (str): path of directory in which to save plots.
                         default: None   
        - modif (bool) : if True, modified (slimmed-down) plots are created
                         instead
                         default: False
    
    Returns:
        - fulldir (str) : final path of the directory in which the figure is 
                          saved (may differ from input savedir, if datetime 
                          subfolder is added.)
        - savename (str): name under which the figure is saved
    """
    analyspar["dend"] = None
    stimstr_pr = sess_str_util.stim_par_str(
        stimpar["stimtype"], stimpar["visflow_dir"], stimpar["visflow_size"],
        stimpar["gabk"], "print")
    statstr_pr = sess_str_util.stat_par_str(
        analyspar["stats"], analyspar["error"], "print")
    dendstr_pr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], extrapar["datatype"], "print")
        
    sessstr = sess_str_util.sess_par_str(
        sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], 
        stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"])
    dendstr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], extrapar["datatype"])
     
    basestr = sess_str_util.base_par_str(trace_stats["baseline"])
    basestr_pr = sess_str_util.base_par_str(trace_stats["baseline"], "print")

    datatype = extrapar["datatype"]
    dimstr = sess_str_util.datatype_dim_str(datatype)

    # extract some info from sess_info
    keys = ["mouse_ns", "sess_ns", "lines", "planes"]
    [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys]
    nroi_strs = sess_str_util.get_nroi_strs(sess_info, empty=(datatype!="roi")) 

    n_sess = len(mouse_ns)

    xrans      = [np.asarray(xran) for xran in trace_stats["xrans"]]
    all_stats  = [np.asarray(sessst) for sessst in trace_stats["all_stats"]]
    exp_stats  = [np.asarray(expst) for expst in trace_stats["exp_stats"]]
    all_counts = trace_stats["all_counts"]
    exp_counts = trace_stats["exp_counts"]

    lock  = trace_stats["lock"]
    col_idx = 0
    if "unexp" in lock:
        lock = "unexp"
        col_idx = 1
    
    # plot unexp_lens default values
    if stimpar["stimtype"] == "gabors":
        DEFAULT_UNEXP_LEN = [3.0, 4.5, 6.0]
        if stimpar["gabfr"] not in ["any", "all"]:
            offset = sess_str_util.gabfr_nbrs(stimpar["gabfr"])
    else:
        DEFAULT_UNEXP_LEN = [2.0, 3.0, 4.0]
    
    offset = 0
    unexp_lab, len_ext = "", ""
    unexp_lens = [[None]] * n_sess
    unexp_len_default = True
    if "unexp_lens" in trace_stats.keys():
        unexp_len_default = False
        unexp_lens = trace_stats["unexp_lens"]
        len_ext = "_bylen"
        
        if stimpar["stimtype"] == "gabors":
            unexp_lens = [
                [sl * 1.5/5 - 0.3 * offset for sl in sls] for sls in unexp_lens
                ]

    inv = 1 if lock == "unexp" else -1
    # RANGE TO PLOT
    if modif:
        st_val = -2.0
        end_val  = 6.0
        n_ticks = int((end_val - st_val) // 2 + 1)
    else:
        n_ticks = 21

    if figpar is None:
        figpar = sess_plot_util.init_figpar()
    figpar = copy.deepcopy(figpar)
    if modif:
        figpar["init"]["subplot_wid"] = 6.5
    else:
        figpar["init"]["subplot_wid"] *= 2

    fig, ax = plot_util.init_fig(n_sess, **figpar["init"])
    exp_min, exp_max = np.inf, -np.inf
    for i, (stats, counts) in enumerate(zip(all_stats, all_counts)):
        sub_ax = plot_util.get_subax(ax, i)

        # plot expected data
        if exp_stats[i].shape[0] != 1:
            raise ValueError("Expected only one quantile for exp_stats.")

        n_lines = quantpar["n_quants"] * len(unexp_lens[i])
        cols = sess_plot_util.get_quant_cols(n_lines)[0][col_idx]
        if len(cols) < n_lines:
            cols = [None] * n_lines

        if modif:
            line = "2/3" if "23" in lines[i] else "5"
            plane = "somata" if "soma" in planes[i] else "dendrites"
            title = f"M{mouse_ns[i]} - layer {line} {plane}{dendstr_pr}"
            lab = "exp" if i == 0 else None
            y_ax = None if i == 0 else ""

            st, end = 0, len(xrans[i])
            st_vals = list(filter(
                lambda j: xrans[i][j] <= st_val, range(len(xrans[i]))
                ))
            end_vals = list(filter(
                lambda j: xrans[i][j] >= end_val, range(len(xrans[i]))
                ))
            if len(st_vals) != 0:
                st = st_vals[-1]
            if len(end_vals) != 0:
                end = end_vals[0] + 1
            time_slice = slice(st, end)

        else:
            title = (f"Mouse {mouse_ns[i]} - {stimstr_pr}, "
                u"{} ".format(statstr_pr) + f"{lock} locked across {dimstr}"
                f"{basestr_pr}\n(sess {sess_ns[i]}, {lines[i]} {planes[i]}"
                f"{dendstr_pr}{nroi_strs[i]})")
            lab = f"exp (no lock) ({exp_counts[i][0]})"
            y_ax = None
            st = 0
            end = len(xrans[i])
            time_slice = slice(None) # use all

        # add length markers
        use_unexp_lens = unexp_lens[i]
        if unexp_len_default:
            use_unexp_lens = DEFAULT_UNEXP_LEN
        leng_col = sess_plot_util.get_quant_cols(1)[0][col_idx][0]
        for leng in use_unexp_lens:
            if leng is None:
                continue
            edge = leng * inv
            if edge < 0:
                edge = np.max([xrans[i][st], edge])
            elif edge > 0:
                edge = np.min([xrans[i][end - 1], edge])
            plot_util.add_vshade(
                sub_ax, 0, edge, color=leng_col, alpha=0.1)

        sess_plot_util.add_axislabels(
            sub_ax, fluor=analyspar["fluor"], datatype=datatype, y_ax=y_ax
            )
        plot_util.add_bars(sub_ax, hbars=0)
        alpha = np.min([0.4, 0.8 / n_lines])

        if stimpar["stimtype"] == "gabors":
            sess_plot_util.plot_gabfr_pattern(
                sub_ax, xrans[i], offset=offset, bars_omit=[0] + unexp_lens[i]
                )

        plot_util.plot_traces(
            sub_ax, xrans[i][time_slice], exp_stats[i][0][0, time_slice], 
            exp_stats[i][0][1:, time_slice], n_xticks=n_ticks,
            alpha=alpha, label=lab, alpha_line=0.8, color="darkgray", 
            xticks="auto")

        # get expected data range to adjust y lims
        exp_min = np.min([exp_min, np.nanmin(exp_stats[i][0][0])])
        exp_max = np.max([exp_max, np.nanmax(exp_stats[i][0][0])])

        n = 0 # count lines plotted
        for s, unexp_len in enumerate(unexp_lens[i]):
            if unexp_len is not None:
                counts, stats = all_counts[i][s], all_stats[i][s]       
                # remove offset   
                unexp_lab = f"unexp len {unexp_len + 0.3 * offset}"
            else:
                unexp_lab = "unexp" if modif else f"{lock} lock"
            for q, qu_idx in enumerate(quantpar["qu_idx"]):
                qu_lab = ""
                if quantpar["n_quants"] > 1:
                    qu_lab = "{} ".format(sess_str_util.quantile_str(
                        qu_idx, quantpar["n_quants"], str_type="print"
                        ))
                lab = f"{qu_lab}{unexp_lab}"
                if modif:
                    lab = lab if i == 0 else None
                else:
                    lab = f"{lab} ({counts[q]})"
                if n == 2 and cols[n] is None:
                    sub_ax.plot([], []) # to advance the color cycle (past gray)
                plot_util.plot_traces(sub_ax, xrans[i][time_slice], 
                    stats[q][0, time_slice], stats[q][1:, time_slice], title, 
                    alpha=alpha, label=lab, n_xticks=n_ticks, alpha_line=0.8, 
                    color=cols[n], xticks="auto")
                n += 1
            if unexp_len is not None:
                plot_util.add_bars(
                    sub_ax, hbars=unexp_len, color=sub_ax.lines[-1].get_color(), 
                    alpha=1)
    
    plot_util.turn_off_extra(ax, n_sess)

    if savedir is None:
        savedir = Path(
            figpar["dirs"][datatype], 
            figpar["dirs"]["unexp_qu"], 
            f"{lock}_lock", basestr.replace("_", ""))

    if not modif:
        if stimpar["stimtype"] == "visflow":
            plot_util.rel_confine_ylims(sub_ax, [exp_min, exp_max], 5)

    qu_str = f"_{quantpar['n_quants']}q"
    if quantpar["n_quants"] == 1:
        qu_str = ""
 
    savename = (f"{datatype}_av_{lock}_lock{len_ext}{basestr}_{sessstr}"
        f"{dendstr}{qu_str}")
    fulldir = plot_util.savefig(fig, savename, savedir, **figpar["save"])

    return fulldir, savename
Пример #10
0
def plot_traces_by_qu_unexp_sess(analyspar, sesspar, stimpar, extrapar, 
                                quantpar, sess_info, trace_stats, figpar=None, 
                                savedir=None, modif=False):
    """
    plot_traces_by_qu_unexp_sess(analyspar, sesspar, stimpar, extrapar, 
                                quantpar, sess_info, trace_stats)

    From dictionaries, plots traces by quantile/unexpected with each session in a 
    separate subplot.
    
    Returns figure name and save directory path.
    
    Required args:
        - analyspar (dict)  : dictionary with keys of AnalysPar namedtuple
        - sesspar (dict)    : dictionary with keys of SessPar namedtuple
        - stimpar (dict)    : dictionary with keys of StimPar namedtuple
        - extrapar (dict)   : dictionary containing additional analysis 
                              parameters
            ["analysis"] (str): analysis type (e.g., "t")
            ["datatype"] (str): datatype (e.g., "run", "roi")
        - quantpar (dict)   : dictionary with keys of QuantPar namedtuple
        - sess_info (dict)  : dictionary containing information from each
                              session 
            ["mouse_ns"] (list)   : mouse numbers
            ["sess_ns"] (list)    : session numbers  
            ["lines"] (list)      : mouse lines
            ["planes"] (list)     : imaging planes
            if extrapar["datatype"] == "roi":
            ["nrois"] (list)      : number of ROIs in session

        - trace_stats (dict): dictionary containing trace stats information
            ["xrans"] (list)           : time values for the frames, for each 
                                         session
            ["all_stats"] (list)       : list of 4D arrays or lists of trace 
                                         data statistics across ROIs for each
                                         session, structured as:
                                            sess x unexp x quantiles x
                                            stats (me, err) x frames
            ["all_counts"] (array-like): number of sequences, structured as:
                                                sess x unexp x quantiles
                
    Optional args:
        - figpar (dict): dictionary containing the following figure parameter 
                         dictionaries
                         default: None
            ["init"] (dict): dictionary with figure initialization parameters
            ["save"] (dict): dictionary with figure saving parameters
            ["dirs"] (dict): dictionary with additional figure parameters
        - savedir (str): path of directory in which to save plots.
                         default: None    
        - modif (bool) : if True, modified (slimmed-down) plots are created
                         instead
                         default: False
    
    Returns:
        - fulldir (str) : final path of the directory in which the figure is 
                          saved (may differ from input savedir, if datetime 
                          subfolder is added.)
        - savename (str): name under which the figure is saved
    """
 
    stimstr_pr = sess_str_util.stim_par_str(
        stimpar["stimtype"], stimpar["visflow_dir"], stimpar["visflow_size"],
        stimpar["gabk"], "print")
    statstr_pr = sess_str_util.stat_par_str(
        analyspar["stats"], analyspar["error"], "print")
    dendstr_pr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], extrapar["datatype"], "print")
        
    sessstr = sess_str_util.sess_par_str(
        sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], 
        stimpar["visflow_dir"], stimpar["visflow_size"], stimpar["gabk"])
    dendstr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], extrapar["datatype"])
     
    datatype = extrapar["datatype"]
    dimstr = sess_str_util.datatype_dim_str(datatype)

    # extract some info from sess_info
    keys = ["mouse_ns", "sess_ns", "lines", "planes"]
    [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys]
    nroi_strs = sess_str_util.get_nroi_strs(sess_info, empty=(datatype!="roi")) 

    n_sess = len(mouse_ns)

    xrans      = [np.asarray(xran) for xran in trace_stats["xrans"]]
    all_stats  = [np.asarray(sessst) for sessst in trace_stats["all_stats"]]
    all_counts = trace_stats["all_counts"]

    cols, lab_cols = sess_plot_util.get_quant_cols(quantpar["n_quants"])
    alpha = np.min([0.4, 0.8 / quantpar["n_quants"]])

    unexps = ["exp", "unexp"]
    n = 6
    if figpar is None:
        figpar = sess_plot_util.init_figpar()
    
    fig, ax = plot_util.init_fig(n_sess, **figpar["init"])
    for i in range(n_sess):
        sub_ax = plot_util.get_subax(ax, i)
        for s, [col, leg_ext] in enumerate(zip(cols, unexps)):
            for q, qu_idx in enumerate(quantpar["qu_idx"]):
                qu_lab = ""
                if quantpar["n_quants"] > 1:
                    qu_lab = "{} ".format(sess_str_util.quantile_str(
                        qu_idx, quantpar["n_quants"], str_type="print"
                        ))
                if modif:
                    line = "2/3" if "23" in lines[i] else "5"
                    plane = "somata" if "soma" in planes[i] else "dendrites"
                    title = f"M{mouse_ns[i]} - layer {line} {plane}{dendstr_pr}"
                    leg = f"{qu_lab}{leg_ext}" if i == 0 else None
                    y_ax = None if i == 0 else ""

                else:
                    title=(f"Mouse {mouse_ns[i]} - {stimstr_pr}, " 
                        u"{}\n".format(statstr_pr) + f"across {dimstr} (sess "
                        f"{sess_ns[i]}, {lines[i]} {planes[i]}{dendstr_pr}"
                        f"{nroi_strs[i]})")
                    leg = f"{qu_lab}{leg_ext} ({all_counts[i][s][q]})"
                    y_ax = None

                plot_util.plot_traces(
                    sub_ax, xrans[i], all_stats[i][s, q, 0], 
                    all_stats[i][s, q, 1:], title, color=col[q], alpha=alpha, 
                    label=leg, n_xticks=n, xticks="auto")
                sess_plot_util.add_axislabels(
                    sub_ax, fluor=analyspar["fluor"], datatype=datatype, 
                    y_ax=y_ax)
    
    plot_util.turn_off_extra(ax, n_sess)

    if stimpar["stimtype"] == "gabors": 
        sess_plot_util.plot_labels(
            ax, stimpar["gabfr"], "both", pre=stimpar["pre"], 
            post=stimpar["post"], cols=lab_cols, 
            sharey=figpar["init"]["sharey"])
    
    if savedir is None:
        savedir = Path(
            figpar["dirs"][datatype], 
            figpar["dirs"]["unexp_qu"])

    qu_str = f"_{quantpar['n_quants']}q"
    if quantpar["n_quants"] == 1:
        qu_str = ""

    savename = f"{datatype}_av_{sessstr}{dendstr}{qu_str}"
    fulldir = plot_util.savefig(fig, savename, savedir, **figpar["save"])

    return fulldir, savename
def plot_pup_diff_corr(analyspar, sesspar, stimpar, extrapar, 
                       sess_info, corr_data, figpar=None, savedir=None):
    """
    plot_pup_diff_corr(analyspar, sesspar, stimpar, extrapar, 
                       sess_info, corr_data)

    From dictionaries, plots correlation between unexpected-locked changes in 
    pupil diameter and running or ROI data for each session.

    Required args:
        - analyspar (dict)    : dictionary with keys of AnalysPar namedtuple
        - sesspar (dict)      : dictionary with keys of SessPar namedtuple 
        - stimpar (dict)      : dictionary with keys of StimPar namedtuple
        - extrapar (dict)     : dictionary containing additional analysis 
                                parameters
            ["analysis"] (str): analysis type (e.g., "c")
            ["datatype"] (str): datatype (e.g., "run", "roi")
        - sess_info (dict)    : dictionary containing information from each
                                session 
            ["mouse_ns"] (list)   : mouse numbers
            ["sess_ns"] (list)    : session numbers  
            ["lines"] (list)      : mouse lines
            ["planes"] (list)     : imaging planes
            ["nrois"] (list)      : number of ROIs in session
        - corr_data (dict)    : dictionary containing data to plot:
            ["corrs"] (list): list of correlation values between pupil and 
                              running or ROI differences for each session
            ["diffs"] (list): list of differences for each session, structured
                                  as [pupil, ROI/run] x trials x frames
    
    Optional args:
        - figpar (dict) : dictionary containing the following figure parameter 
                          dictionaries
                          default: None
            ["init"] (dict): dictionary with figure initialization parameters
            ["save"] (dict): dictionary with figure saving parameters
            ["dirs"] (dict): dictionary with additional figure parameters
        - savedir (Path): path of directory in which to save plots.
                          default: None
    
    Returns:
        - fulldir (Path): final path of the directory in which the figure is 
                          saved (may differ from input savedir, if datetime 
                          subfolder is added.)
        - savename (str): name under which the figure is saved
    """
    statstr_pr = sess_str_util.stat_par_str(
        analyspar["stats"], analyspar["error"], "print")
    stimstr_pr = sess_str_util.stim_par_str(
        stimpar["stimtype"], stimpar["visflow_dir"], stimpar["visflow_size"], 
        stimpar["gabk"], "print")
    dendstr_pr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], extrapar["datatype"], "print")

    sessstr = sess_str_util.sess_par_str(
        sesspar["sess_n"], stimpar["stimtype"], sesspar["plane"], 
        stimpar["visflow_dir"],stimpar["visflow_size"], stimpar["gabk"]) 
    dendstr = sess_str_util.dend_par_str(
        analyspar["dend"], sesspar["plane"], extrapar["datatype"])
    
    datatype = extrapar["datatype"]
    datastr = sess_str_util.datatype_par_str(datatype)

    if datatype == "roi":
        label_str = sess_str_util.fluor_par_str(
            analyspar["fluor"], str_type="print")
        full_label_str = u"{}, {} across ROIs".format(
            label_str, analyspar["stats"])
    elif datatype == "run":
        label_str = datastr
        full_label_str = datastr
    
    lab_app = (f" ({analyspar['stats']} over "
        f"{stimpar['pre']}/{stimpar['post']} sec)")

    logger.info(f"Plotting pupil vs {datastr} changes.")
    
    delta = "\u0394"

    # extract some info from sess_info
    keys = ["mouse_ns", "sess_ns", "lines", "planes"]
    [mouse_ns, sess_ns, lines, planes] = [sess_info[key] for key in keys]

    n_sess = len(mouse_ns)
    nroi_strs = sess_str_util.get_nroi_strs(
        sess_info, empty=(datatype!="roi"), style="comma"
        ) 

    if figpar is None:
        figpar = sess_plot_util.init_figpar()

    figpar = copy.deepcopy(figpar)
    if figpar["save"]["use_dt"] is None:
        figpar["save"]["use_dt"] = gen_util.create_time_str()
    figpar["init"]["sharex"] = False
    figpar["init"]["sharey"] = False
    figpar["init"]["ncols"] = n_sess
    
    fig, ax = plot_util.init_fig(2 * n_sess, **figpar["init"])
    suptitle = (f"Relationship between pupil diam. and {datastr} changes, "
        "locked to unexpected events")
    
    for i, sess_diffs in enumerate(corr_data["diffs"]):
        sub_axs = ax[:, i]
        title = (f"Mouse {mouse_ns[i]} - {stimstr_pr}, " + 
            u"{}".format(statstr_pr) + f"\n(sess {sess_ns[i]}, {lines[i]} "
            f"{planes[i]}{dendstr_pr}{nroi_strs[i]})")
        
        # top plot: correlations
        corr = f"Corr = {corr_data['corrs'][i]:.2f}"
        sub_axs[0].plot(
            sess_diffs[0], sess_diffs[1], marker=".", linestyle="None", 
            label=corr)
        sub_axs[0].set_title(title, y=1.01)
        sub_axs[0].set_xlabel(u"{} pupil diam.{}".format(delta, lab_app))
        if i == 0:
            sub_axs[0].set_ylabel(u"{} {}\n{}".format(
                delta, full_label_str, lab_app))
        sub_axs[0].legend()
        
        # bottom plot: differences across occurrences
        data_lab = u"{} {}".format(delta, label_str)   
        pup_lab = u"{} pupil diam.".format(delta)
        cols = []
        scaled = []
        for d, lab in enumerate([pup_lab, data_lab]):
            scaled.append(math_util.scale_data(
                np.asarray(sess_diffs[d]), sc_type="min_max")[0])
            art, = sub_axs[1].plot(scaled[-1], marker=".")
            cols.append(sub_axs[-1].lines[-1].get_color())
            if i == n_sess - 1: # only for last graph
                art.set_label(lab)
                sub_axs[1].legend()
        sub_axs[1].set_xlabel("Unexpected event occurrence")
        if i == 0:
            sub_axs[1].set_ylabel(
                u"{} response locked\nto unexpected onset (scaled)".format(delta))
        # shade area between lines
        plot_util.plot_btw_traces(
            sub_axs[1], scaled[0], scaled[1], color=cols, alpha=0.4)

    fig.suptitle(suptitle, fontsize="xx-large", y=1)

    if savedir is None:
        savedir = Path(
            figpar["dirs"][datatype],
            figpar["dirs"]["pupil"])

    savename = f"{datatype}_diff_corr_{sessstr}{dendstr}"

    fulldir = plot_util.savefig(fig, savename, savedir, **figpar["save"])

    return fulldir, savename                              
Пример #12
0
def run_glms(sessions,
             analysis,
             seed,
             analyspar,
             sesspar,
             stimpar,
             glmpar,
             figpar,
             parallel=False):
    """
    run_glms(sessions, analysis, seed, analyspar, sesspar, stimpar, glmpar, 
             figpar)
    """

    seed = rand_util.seed_all(seed, "cpu", log_seed=False)

    sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype,
                                            sesspar.plane, stimpar.visflow_dir,
                                            stimpar.visflow_size, stimpar.gabk,
                                            "print")
    dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane,
                                            "roi", "print")

    logger.info(
        "Analysing and plotting explained variance in ROI activity "
        f"({sessstr_pr}{dendstr_pr}).",
        extra={"spacing": "\n"})

    if glmpar.each_roi:  # must do each session separately
        glm_type = "per_ROI_per_sess"
        sess_batches = sessions
        logger.info("Per ROI, each session separately.")
    else:
        glm_type = "across_sess"
        sess_batches = [sessions]
        logger.info(f"Across ROIs, {len(sessions)} sessions together.")

    # optionally runs in parallel, or propagates parallel to next level
    parallel_here = (parallel and not (glmpar.each_roi)
                     and (len(sess_batches) != 1))
    parallel_after = True if (parallel and not (parallel_here)) else False

    args_list = [analyspar, sesspar, stimpar, glmpar]
    args_dict = {
        "parallel": parallel_after,  # proactively set next parallel 
        "seed": seed,
    }
    all_expl_var = gen_util.parallel_wrap(run_glm,
                                          sess_batches,
                                          args_list,
                                          args_dict,
                                          parallel=parallel_here)

    if glmpar.each_roi:
        sessions = sess_batches
    else:
        sessions = sess_batches[0]

    sess_info = sess_gen_util.get_sess_info(sessions,
                                            analyspar.fluor,
                                            rem_bad=analyspar.rem_bad)

    extrapar = {
        "analysis": analysis,
        "seed": seed,
        "glm_type": glm_type,
    }

    info = {
        "analyspar": analyspar._asdict(),
        "sesspar": sesspar._asdict(),
        "stimpar": stimpar._asdict(),
        "glmpar": glmpar._asdict(),
        "extrapar": extrapar,
        "all_expl_var": all_expl_var,
        "sess_info": sess_info
    }

    fulldir, savename = glm_plots.plot_glm_expl_var(figpar=figpar, **info)

    file_util.saveinfo(info, savename, fulldir, "json")

    return
Пример #13
0
def run_pupil_diff_corr(sessions,
                        analysis,
                        analyspar,
                        sesspar,
                        stimpar,
                        figpar,
                        datatype="roi"):
    """
    run_pupil_diff_corr(sessions, analysis, analyspar, sesspar, 
                        stimpar, figpar)
    
    Calculates and plots between pupil and ROI/running changes
    locked to each unexpected, as well as the correlation.

    Saves results and parameters relevant to analysis in a dictionary.

    Required args:
        - sessions (list)      : list of Session objects
        - analysis (str)       : analysis type (e.g., "c")
        - analyspar (AnalysPar): named tuple containing analysis parameters
        - sesspar (SessPar)    : named tuple containing session parameters
        - stimpar (StimPar)    : named tuple containing stimulus parameters
        - figpar (dict)        : dictionary containing figure parameters
    
    Optional args:
        - datatype (str): type of data (e.g., "roi", "run")
    """

    sessstr_pr = sess_str_util.sess_par_str(sesspar.sess_n, stimpar.stimtype,
                                            sesspar.plane, stimpar.visflow_dir,
                                            stimpar.visflow_size, stimpar.gabk,
                                            "print")
    dendstr_pr = sess_str_util.dend_par_str(analyspar.dend, sesspar.plane,
                                            datatype, "print")

    datastr = sess_str_util.datatype_par_str(datatype)

    logger.info(
        "Analysing and plotting correlations between unexpected vs "
        f"expected {datastr} traces between sessions ({sessstr_pr}"
        f"{dendstr_pr}).",
        extra={"spacing": "\n"})

    sess_diffs = []
    sess_corr = []

    for sess in sessions:
        if datatype == "roi" and (sess.only_tracked_rois != analyspar.tracked):
            raise RuntimeError(
                "sess.only_tracked_rois should match analyspar.tracked.")
        diffs = peristim_data(sess,
                              stimpar,
                              datatype=datatype,
                              returns="diff",
                              scale=analyspar.scale,
                              first_unexp=True)
        [pup_diff, data_diff] = diffs
        # trials (x ROIs)
        if datatype == "roi":
            if analyspar.rem_bad:
                nanpol = None
            else:
                nanpol = "omit"
            data_diff = math_util.mean_med(data_diff,
                                           analyspar.stats,
                                           axis=-1,
                                           nanpol=nanpol)
        elif datatype != "run":
            gen_util.accepted_values_error("datatype", datatype,
                                           ["roi", "run"])
        sess_corr.append(np.corrcoef(pup_diff, data_diff)[0, 1])
        sess_diffs.append([diff.tolist() for diff in [pup_diff, data_diff]])

    extrapar = {
        "analysis": analysis,
        "datatype": datatype,
    }

    corr_data = {"corrs": sess_corr, "diffs": sess_diffs}

    sess_info = sess_gen_util.get_sess_info(sessions,
                                            analyspar.fluor,
                                            incl_roi=(datatype == "roi"),
                                            rem_bad=analyspar.rem_bad)

    info = {
        "analyspar": analyspar._asdict(),
        "sesspar": sesspar._asdict(),
        "stimpar": stimpar._asdict(),
        "extrapar": extrapar,
        "sess_info": sess_info,
        "corr_data": corr_data
    }

    fulldir, savename = pup_plots.plot_pup_diff_corr(figpar=figpar, **info)

    file_util.saveinfo(info, savename, fulldir, "json")