Example #1
0
 def train(self, ):
     print 'Starting training.'
     print 'Initializing train dataset.'
     self.batch_size = self.state.get('batch_size', 20)
     train_set = Dataset([self.data['train']],
                         batch_size=self.batch_size,
                         targets=[self.targets['train']])
     print 'Initializing valid dataset.'
     valid_set = Dataset([self.data['valid']],
                         batch_size=self.batch_size,
                         targets=[self.targets['valid']])
     self.optimizer = SGD_Optimizer(self.model.params,
                                    [self.model.x, self.model.y],
                                    [self.model.cost, self.model.acc],
                                    momentum=self.state.get(
                                        'momentum', False))
     lr = self.state.get('learning_rate', 0.1)
     num_epochs = self.state.get('num_epochs', 200)
     save = self.state.get('save', False)
     mom_rate = self.state.get('mom_rate', None)
     self.optimizer.train(train_set,
                          valid_set,
                          learning_rate=lr,
                          num_epochs=num_epochs,
                          save=save,
                          mom_rate=mom_rate)
Example #2
0
class trainer():
	def __init__(self,state):
		self.state = state
		self.dataset_dir = self.state.get('dataset_dir','')
		self.list_dir = os.path.join(self.dataset_dir,'lists')
		self.lists = {}
		self.lists['train'] = os.path.join(self.list_dir,'train_1_of_1.txt')
		self.lists['valid'] = os.path.join(self.list_dir,'valid_1_of_1.txt')
		self.lists['test'] = os.path.join(self.list_dir,'test_1_of_1.txt')
		self.preprocessor = PreProcessor(self.dataset_dir) 
		print 'Preparing train/valid/test splits'
		self.preprocessor.prepare_fold(self.lists['train'],self.lists['valid'],self.lists['test'])
		self.data = self.preprocessor.data
		self.targets = self.preprocessor.targets
		print 'Building model.'
		self.model = MLP(n_inputs=self.state.get('n_inputs',513),n_outputs=self.state.get('n_ouputs',10),
						 n_hidden=self.state.get('n_hidden',[50]),activation=self.state.get('activation','sigmoid'),
						 output_layer=self.state.get('sigmoid','sigmoid'),dropout_rates=self.state.get('dropout_rates',None))

	def train(self,):
		print 'Starting training.'
		print 'Initializing train dataset.'
		self.batch_size = self.state.get('batch_size',20)
		train_set = Dataset([self.data['train']],batch_size=self.batch_size,targets=[self.targets['train']])
		print 'Initializing valid dataset.'
		valid_set = Dataset([self.data['valid']],batch_size=self.batch_size,targets=[self.targets['valid']])
		self.optimizer = SGD_Optimizer(self.model.params,[self.model.x,self.model.y],[self.model.cost,self.model.acc],momentum=self.state.get('momentum',False))
		lr = self.state.get('learning_rate',0.1)
		num_epochs = self.state.get('num_epochs',200)
		save = self.state.get('save',False)
		mom_rate = self.state.get('mom_rate',None)
		self.optimizer.train(train_set,valid_set,learning_rate=lr,num_epochs=num_epochs,save=save,mom_rate=mom_rate)
Example #3
0
class trainer():
    def __init__(self, state):
        self.state = state
        self.dataset_dir = self.state.get('dataset_dir', '')
        self.list_dir = os.path.join(self.dataset_dir, 'lists')
        self.lists = {}
        self.lists['train'] = os.path.join(self.list_dir, 'train_1_of_1.txt')
        self.lists['valid'] = os.path.join(self.list_dir, 'valid_1_of_1.txt')
        self.lists['test'] = os.path.join(self.list_dir, 'test_1_of_1.txt')
        self.preprocessor = PreProcessor(self.dataset_dir)
        print 'Preparing train/valid/test splits'
        self.preprocessor.prepare_fold(self.lists['train'],
                                       self.lists['valid'], self.lists['test'])
        self.data = self.preprocessor.data
        self.targets = self.preprocessor.targets
        print 'Building model.'
        self.model = MLP(n_inputs=self.state.get('n_inputs', 513),
                         n_outputs=self.state.get('n_ouputs', 10),
                         n_hidden=self.state.get('n_hidden', [50]),
                         activation=self.state.get('activation', 'sigmoid'),
                         output_layer=self.state.get('sigmoid', 'sigmoid'),
                         dropout_rates=self.state.get('dropout_rates', None))

    def train(self, ):
        print 'Starting training.'
        print 'Initializing train dataset.'
        self.batch_size = self.state.get('batch_size', 20)
        train_set = Dataset([self.data['train']],
                            batch_size=self.batch_size,
                            targets=[self.targets['train']])
        print 'Initializing valid dataset.'
        valid_set = Dataset([self.data['valid']],
                            batch_size=self.batch_size,
                            targets=[self.targets['valid']])
        self.optimizer = SGD_Optimizer(self.model.params,
                                       [self.model.x, self.model.y],
                                       [self.model.cost, self.model.acc],
                                       momentum=self.state.get(
                                           'momentum', False))
        lr = self.state.get('learning_rate', 0.1)
        num_epochs = self.state.get('num_epochs', 200)
        save = self.state.get('save', False)
        mom_rate = self.state.get('mom_rate', None)
        self.optimizer.train(train_set,
                             valid_set,
                             learning_rate=lr,
                             num_epochs=num_epochs,
                             save=save,
                             mom_rate=mom_rate)
Example #4
0
 def train(self,):
     print 'Starting training.'
     print 'Initializing train dataset.'
     self.batch_size = self.state.get('batch_size', 20)
     train_set = Dataset(
         [self.data['train']],
         batch_size=self.batch_size,
         targets=[self.targets['train']])
     print 'Initializing valid dataset.'
     valid_set = Dataset(
         [self.data['valid']],
         batch_size=self.batch_size,
         targets=[self.targets['valid']])
     self.optimizer = SGD_Optimizer(
         self.model.params,
         [self.model.x, self.model.y],
         [self.model.cost, self.model.acc],
         momentum=self.state.get('momentum', False))
     lr = self.state.get('learning_rate', 0.1)
     num_epochs = self.state.get('num_epochs', 200)
     save = self.state.get('save', False)
     mom_rate = self.state.get('mom_rate', None)
     plot = self.state.get('plot', False)
     output_folder = self.state.get('output_folder', None)
     self.optimizer.train(train_set,
                          valid_set,
                          self.state.get('update_lr_params'),
                          lr,
                          num_epochs,
                          save,
                          output_folder,
                          self.state.get('lr_update'),
                          mom_rate,
                          plot,
                          self.state.get('headless'))
Example #5
0
	def train(self,):
		print 'Starting training.'
		print 'Initializing train dataset.'
		self.batch_size = self.state.get('batch_size',20)
		train_set = Dataset([self.data['train']],batch_size=self.batch_size,targets=[self.targets['train']])
		print 'Initializing valid dataset.'
		valid_set = Dataset([self.data['valid']],batch_size=self.batch_size,targets=[self.targets['valid']])
		self.optimizer = SGD_Optimizer(self.model.params,[self.model.x,self.model.y],[self.model.cost,self.model.acc],momentum=self.state.get('momentum',False))
		lr = self.state.get('learning_rate',0.1)
		num_epochs = self.state.get('num_epochs',200)
		save = self.state.get('save',False)
		mom_rate = self.state.get('mom_rate',None)
		self.optimizer.train(train_set,valid_set,learning_rate=lr,num_epochs=num_epochs,save=save,mom_rate=mom_rate)