def train(self, ): print 'Starting training.' print 'Initializing train dataset.' self.batch_size = self.state.get('batch_size', 20) train_set = Dataset([self.data['train']], batch_size=self.batch_size, targets=[self.targets['train']]) print 'Initializing valid dataset.' valid_set = Dataset([self.data['valid']], batch_size=self.batch_size, targets=[self.targets['valid']]) self.optimizer = SGD_Optimizer(self.model.params, [self.model.x, self.model.y], [self.model.cost, self.model.acc], momentum=self.state.get( 'momentum', False)) lr = self.state.get('learning_rate', 0.1) num_epochs = self.state.get('num_epochs', 200) save = self.state.get('save', False) mom_rate = self.state.get('mom_rate', None) self.optimizer.train(train_set, valid_set, learning_rate=lr, num_epochs=num_epochs, save=save, mom_rate=mom_rate)
class trainer(): def __init__(self,state): self.state = state self.dataset_dir = self.state.get('dataset_dir','') self.list_dir = os.path.join(self.dataset_dir,'lists') self.lists = {} self.lists['train'] = os.path.join(self.list_dir,'train_1_of_1.txt') self.lists['valid'] = os.path.join(self.list_dir,'valid_1_of_1.txt') self.lists['test'] = os.path.join(self.list_dir,'test_1_of_1.txt') self.preprocessor = PreProcessor(self.dataset_dir) print 'Preparing train/valid/test splits' self.preprocessor.prepare_fold(self.lists['train'],self.lists['valid'],self.lists['test']) self.data = self.preprocessor.data self.targets = self.preprocessor.targets print 'Building model.' self.model = MLP(n_inputs=self.state.get('n_inputs',513),n_outputs=self.state.get('n_ouputs',10), n_hidden=self.state.get('n_hidden',[50]),activation=self.state.get('activation','sigmoid'), output_layer=self.state.get('sigmoid','sigmoid'),dropout_rates=self.state.get('dropout_rates',None)) def train(self,): print 'Starting training.' print 'Initializing train dataset.' self.batch_size = self.state.get('batch_size',20) train_set = Dataset([self.data['train']],batch_size=self.batch_size,targets=[self.targets['train']]) print 'Initializing valid dataset.' valid_set = Dataset([self.data['valid']],batch_size=self.batch_size,targets=[self.targets['valid']]) self.optimizer = SGD_Optimizer(self.model.params,[self.model.x,self.model.y],[self.model.cost,self.model.acc],momentum=self.state.get('momentum',False)) lr = self.state.get('learning_rate',0.1) num_epochs = self.state.get('num_epochs',200) save = self.state.get('save',False) mom_rate = self.state.get('mom_rate',None) self.optimizer.train(train_set,valid_set,learning_rate=lr,num_epochs=num_epochs,save=save,mom_rate=mom_rate)
class trainer(): def __init__(self, state): self.state = state self.dataset_dir = self.state.get('dataset_dir', '') self.list_dir = os.path.join(self.dataset_dir, 'lists') self.lists = {} self.lists['train'] = os.path.join(self.list_dir, 'train_1_of_1.txt') self.lists['valid'] = os.path.join(self.list_dir, 'valid_1_of_1.txt') self.lists['test'] = os.path.join(self.list_dir, 'test_1_of_1.txt') self.preprocessor = PreProcessor(self.dataset_dir) print 'Preparing train/valid/test splits' self.preprocessor.prepare_fold(self.lists['train'], self.lists['valid'], self.lists['test']) self.data = self.preprocessor.data self.targets = self.preprocessor.targets print 'Building model.' self.model = MLP(n_inputs=self.state.get('n_inputs', 513), n_outputs=self.state.get('n_ouputs', 10), n_hidden=self.state.get('n_hidden', [50]), activation=self.state.get('activation', 'sigmoid'), output_layer=self.state.get('sigmoid', 'sigmoid'), dropout_rates=self.state.get('dropout_rates', None)) def train(self, ): print 'Starting training.' print 'Initializing train dataset.' self.batch_size = self.state.get('batch_size', 20) train_set = Dataset([self.data['train']], batch_size=self.batch_size, targets=[self.targets['train']]) print 'Initializing valid dataset.' valid_set = Dataset([self.data['valid']], batch_size=self.batch_size, targets=[self.targets['valid']]) self.optimizer = SGD_Optimizer(self.model.params, [self.model.x, self.model.y], [self.model.cost, self.model.acc], momentum=self.state.get( 'momentum', False)) lr = self.state.get('learning_rate', 0.1) num_epochs = self.state.get('num_epochs', 200) save = self.state.get('save', False) mom_rate = self.state.get('mom_rate', None) self.optimizer.train(train_set, valid_set, learning_rate=lr, num_epochs=num_epochs, save=save, mom_rate=mom_rate)
def train(self,): print 'Starting training.' print 'Initializing train dataset.' self.batch_size = self.state.get('batch_size', 20) train_set = Dataset( [self.data['train']], batch_size=self.batch_size, targets=[self.targets['train']]) print 'Initializing valid dataset.' valid_set = Dataset( [self.data['valid']], batch_size=self.batch_size, targets=[self.targets['valid']]) self.optimizer = SGD_Optimizer( self.model.params, [self.model.x, self.model.y], [self.model.cost, self.model.acc], momentum=self.state.get('momentum', False)) lr = self.state.get('learning_rate', 0.1) num_epochs = self.state.get('num_epochs', 200) save = self.state.get('save', False) mom_rate = self.state.get('mom_rate', None) plot = self.state.get('plot', False) output_folder = self.state.get('output_folder', None) self.optimizer.train(train_set, valid_set, self.state.get('update_lr_params'), lr, num_epochs, save, output_folder, self.state.get('lr_update'), mom_rate, plot, self.state.get('headless'))
def train(self,): print 'Starting training.' print 'Initializing train dataset.' self.batch_size = self.state.get('batch_size',20) train_set = Dataset([self.data['train']],batch_size=self.batch_size,targets=[self.targets['train']]) print 'Initializing valid dataset.' valid_set = Dataset([self.data['valid']],batch_size=self.batch_size,targets=[self.targets['valid']]) self.optimizer = SGD_Optimizer(self.model.params,[self.model.x,self.model.y],[self.model.cost,self.model.acc],momentum=self.state.get('momentum',False)) lr = self.state.get('learning_rate',0.1) num_epochs = self.state.get('num_epochs',200) save = self.state.get('save',False) mom_rate = self.state.get('mom_rate',None) self.optimizer.train(train_set,valid_set,learning_rate=lr,num_epochs=num_epochs,save=save,mom_rate=mom_rate)