Example #1
0
    def eval_define(self,weights_path):

        n_classes = self.n_classes
        net = ShelfNet(n_classes=n_classes)

        net.load_state_dict(torch.load(weights_path))
        net.cuda()
        net.eval()
        self.evaluator = MscEval(net, dataloader=None, scales=[1.0],flip=False)
Example #2
0
def evaluate(respth='./res',
             dspth='/data2/.encoding/data/cityscapes',
             checkpoint=None):
    ## logger
    logger = logging.getLogger()

    ## model
    logger.info('\n')
    logger.info('====' * 20)
    logger.info('evaluating the model ...\n')
    logger.info('setup and restore model')
    n_classes = 19
    net = ShelfNet(n_classes=n_classes)

    if checkpoint is None:
        save_pth = osp.join(respth, 'model_final.pth')
    else:
        save_pth = checkpoint

    net.load_state_dict(torch.load(save_pth))
    net.cuda()
    net.eval()

    ## dataset
    batchsize = 5
    n_workers = 2
    dsval = CityScapes(dspth, mode='val')
    dl = DataLoader(dsval,
                    batch_size=batchsize,
                    shuffle=False,
                    num_workers=n_workers,
                    drop_last=False)

    ## evaluator
    logger.info('compute the mIOU')
    evaluator = MscEval(net, dl, scales=[1.0], flip=False)
    ## eval
    mIOU = evaluator.evaluate()
    logger.info('mIOU is: {:.6f}'.format(mIOU))
def test():
    model = ShelfNet(n_classes=19)

    # official implementation
    #model = BiSeNet(19,criterion=None,ohem_criterion=None,is_training=False)

    print(model)
    # count parameter number
    pytorch_total_params = sum(p.numel() for p in model.parameters())
    print("Total number of parameters: %.3fM" % (pytorch_total_params / 1e6))

    model = model.cuda()
    model.eval()

    run_time = list()

    for i in range(0, 100):
        input = torch.randn(1, 3, 1024, 2048).cuda()
        # ensure that context initialization and normal_() operations
        # finish before you start measuring time
        torch.cuda.synchronize()
        torch.cuda.synchronize()
        start = time.perf_counter()

        with torch.no_grad():
            #output = model(input)#, aucx=False)
            output = model(input, aux=False)

        torch.cuda.synchronize()  # wait for mm to finish
        end = time.perf_counter()

        print(end - start)

        run_time.append(end - start)

    run_time.pop(0)

    print('Mean running time is ', np.mean(run_time))