def _read_class(self, cls, dim=1, **kwargs): # Get the default spin channel # First read the geometry geom = self.read_geometry() # Populate the things sp = self.groups['SPARSE'] # Now create the tight-binding stuff (we re-create the # array, hence just allocate the smallest amount possible) C = cls(geom, dim, nnzpr=1) C._csr.ncol = np.array(sp.variables['n_col'][:], np.int32) # Update maximum number of connections (in case future stuff happens) C._csr.ptr = _ncol_to_indptr(C._csr.ncol) C._csr.col = np.array(sp.variables['list_col'][:], np.int32) - 1 # Copy information over C._csr._nnz = len(C._csr.col) C._csr._D = np.empty([C._csr.ptr[-1], dim], np.float64) # Convert from isc to sisl isc _csr_from_sc_off(C.geometry, sp.variables['isc_off'][:, :], C._csr) return C
def _read_class_spin(self, cls, **kwargs): # Get the default spin channel spin = len(self._dimension('spin')) # First read the geometry geom = self.read_geometry() # Populate the things sp = self.groups['SPARSE'] # Since we may read in an orthogonal basis (stored in a Siesta compliant file) # we can check whether it is orthogonal by checking the sum of the absolute S # I.e. whether only diagonal elements are present. S = np.array(sp.variables['S'][:], np.float64) orthogonal = np.abs(S).sum() == geom.no # Now create the tight-binding stuff (we re-create the # array, hence just allocate the smallest amount possible) C = cls(geom, spin, nnzpr=1, orthogonal=orthogonal) C._csr.ncol = np.array(sp.variables['n_col'][:], np.int32) # Update maximum number of connections (in case future stuff happens) C._csr.ptr = _ncol_to_indptr(C._csr.ncol) C._csr.col = np.array(sp.variables['list_col'][:], np.int32) - 1 # Copy information over C._csr._nnz = len(C._csr.col) if orthogonal: C._csr._D = np.empty([C._csr.ptr[-1], spin], np.float64) else: C._csr._D = np.empty([C._csr.ptr[-1], spin + 1], np.float64) C._csr._D[:, C.S_idx] = S # Convert from isc to sisl isc _csr_from_sc_off(C.geometry, sp.variables['isc_off'][:, :], C._csr) return C
def density(self, grid, spinor=None, tol=1e-7, eta=None): r""" Expand the density matrix to the charge density on a grid This routine calculates the real-space density components on a specified grid. This is an *in-place* operation that *adds* to the current values in the grid. Note: To calculate :math:`\rho(\mathbf r)` in a unit-cell different from the originating geometry, simply pass a grid with a unit-cell different than the originating supercell. The real-space density is calculated as: .. math:: \rho(\mathbf r) = \sum_{\nu\mu}\phi_\nu(\mathbf r)\phi_\mu(\mathbf r) D_{\nu\mu} While for non-collinear/spin-orbit calculations the density is determined from the spinor component (`spinor`) by .. math:: \rho_{\boldsymbol\sigma}(\mathbf r) = \sum_{\nu\mu}\phi_\nu(\mathbf r)\phi_\mu(\mathbf r) \sum_\alpha [\boldsymbol\sigma \mathbf \rho_{\nu\mu}]_{\alpha\alpha} Here :math:`\boldsymbol\sigma` corresponds to a spinor operator to extract relevant quantities. By passing the identity matrix the total charge is added. By using the Pauli matrix :math:`\boldsymbol\sigma_x` only the :math:`x` component of the density is added to the grid (see `Spin.X`). Parameters ---------- grid : Grid the grid on which to add the density (the density is in ``e/Ang^3``) spinor : (2,) or (2, 2), optional the spinor matrix to obtain the diagonal components of the density. For un-polarized density matrices this keyword has no influence. For spin-polarized it *has* to be either 1 integer or a vector of length 2 (defaults to total density). For non-collinear/spin-orbit density matrices it has to be a 2x2 matrix (defaults to total density). tol : float, optional DM tolerance for accepted values. For all density matrix elements with absolute values below the tolerance, they will be treated as strictly zeros. eta : bool, optional show a progressbar on stdout """ try: # Once unique has the axis keyword, we know we can safely # use it in this routine # Otherwise we raise an ImportError unique([[0, 1], [2, 3]], axis=0) except Exception: raise NotImplementedError( f"{self.__class__.__name__}.density requires numpy >= 1.13, either update " "numpy or do not use this function!") geometry = self.geometry # Check that the atomic coordinates, really are all within the intrinsic supercell. # If not, it may mean that the DM does not conform to the primary unit-cell paradigm # of matrix elements. It complicates things. fxyz = geometry.fxyz f_min = fxyz.min() f_max = fxyz.max() del fxyz, f_min, f_max # Extract sub variables used throughout the loop shape = _a.asarrayi(grid.shape) dcell = grid.dcell # Sparse matrix data csr = self._csr # In the following we don't care about division # So 1) save error state, 2) turn off divide by 0, 3) calculate, 4) turn on old error state old_err = np.seterr(divide='ignore', invalid='ignore') # Placeholder for the resulting coefficients DM = None if self.spin.kind > Spin.POLARIZED: if spinor is None: # Default to the total density spinor = np.identity(2, dtype=np.complex128) else: spinor = _a.arrayz(spinor) if spinor.size != 4 or spinor.ndim != 2: raise ValueError( f"{self.__class__.__name__}.density with NC/SO spin, requires a 2x2 matrix." ) DM = _a.emptyz([self.nnz, 2, 2]) idx = _a.array_arange(csr.ptr[:-1], n=csr.ncol) if self.spin.kind == Spin.NONCOLINEAR: # non-collinear DM[:, 0, 0] = csr._D[idx, 0] DM[:, 0, 1] = csr._D[idx, 2] + 1j * csr._D[idx, 3] DM[:, 1, 0] = np.conj(DM[:, 0, 1]) DM[:, 1, 1] = csr._D[idx, 1] else: # spin-orbit DM[:, 0, 0] = csr._D[idx, 0] + 1j * csr._D[idx, 4] DM[:, 0, 1] = csr._D[idx, 2] + 1j * csr._D[idx, 3] DM[:, 1, 0] = csr._D[idx, 6] + 1j * csr._D[idx, 7] DM[:, 1, 1] = csr._D[idx, 1] + 1j * csr._D[idx, 5] # Perform dot-product with spinor, and take out the diagonal real part DM = dot(DM, spinor.T)[:, [0, 1], [0, 1]].sum(1).real elif self.spin.kind == Spin.POLARIZED: if spinor is None: spinor = _a.onesd(2) elif isinstance(spinor, Integral): # extract the provided spin-polarization s = _a.zerosd(2) s[spinor] = 1. spinor = s else: spinor = _a.arrayd(spinor) if spinor.size != 2 or spinor.ndim != 1: raise ValueError( f"{self.__class__.__name__}.density with polarized spin, requires spinor " "argument as an integer, or a vector of length 2") idx = _a.array_arange(csr.ptr[:-1], n=csr.ncol) DM = csr._D[idx, 0] * spinor[0] + csr._D[idx, 1] * spinor[1] else: idx = _a.array_arange(csr.ptr[:-1], n=csr.ncol) DM = csr._D[idx, 0] # Create the DM csr matrix. csrDM = csr_matrix((DM, csr.col[idx], _ncol_to_indptr(csr.ncol)), shape=(self.shape[:2]), dtype=DM.dtype) # Clean-up del idx, DM # To heavily speed up the construction of the density we can recreate # the sparse csrDM matrix by summing the lower and upper triangular part. # This means we only traverse the sparse UPPER part of the DM matrix # I.e.: # psi_i * DM_{ij} * psi_j + psi_j * DM_{ji} * psi_i # is equal to: # psi_i * (DM_{ij} + DM_{ji}) * psi_j # Secondly, to ease the loops we extract the main diagonal (on-site terms) # and store this for separate usage csr_sum = [None] * geometry.n_s no = geometry.no primary_i_s = geometry.sc_index([0, 0, 0]) for i_s in range(geometry.n_s): # Extract the csr matrix o_start, o_end = i_s * no, (i_s + 1) * no csr = csrDM[:, o_start:o_end] if i_s == primary_i_s: csr_sum[i_s] = triu(csr) + tril(csr, -1).transpose() else: csr_sum[i_s] = csr # Recreate the column-stacked csr matrix csrDM = ss_hstack(csr_sum, format='csr') del csr, csr_sum # Remove all zero elements (note we use the tolerance here!) csrDM.data = np.where(np.fabs(csrDM.data) > tol, csrDM.data, 0.) # Eliminate zeros and sort indices etc. csrDM.eliminate_zeros() csrDM.sort_indices() csrDM.prune() # 1. Ensure the grid has a geometry associated with it sc = grid.sc.copy() # Find the periodic directions pbc = [ bc == grid.PERIODIC or geometry.nsc[i] > 1 for i, bc in enumerate(grid.bc[:, 0]) ] if grid.geometry is None: # Create the actual geometry that encompass the grid ia, xyz, _ = geometry.within_inf(sc, periodic=pbc) if len(ia) > 0: grid.set_geometry(Geometry(xyz, geometry.atoms[ia], sc=sc)) # Instead of looping all atoms in the supercell we find the exact atoms # and their supercell indices. add_R = _a.fulld(3, geometry.maxR()) # Calculate the required additional vectors required to increase the fictitious # supercell by add_R in each direction. # For extremely skewed lattices this will be way too much, hence we make # them square. o = sc.toCuboid(True) sc = SuperCell(o._v + np.diag(2 * add_R), origin=o.origin - add_R) # Retrieve all atoms within the grid supercell # (and the neighbours that connect into the cell) IA, XYZ, ISC = geometry.within_inf(sc, periodic=pbc) XYZ -= grid.sc.origin.reshape(1, 3) # Retrieve progressbar eta = progressbar(len(IA), f"{self.__class__.__name__}.density", "atom", eta) cell = geometry.cell atoms = geometry.atoms axyz = geometry.axyz a2o = geometry.a2o def xyz2spherical(xyz, offset): """ Calculate the spherical coordinates from indices """ rx = xyz[:, 0] - offset[0] ry = xyz[:, 1] - offset[1] rz = xyz[:, 2] - offset[2] # Calculate radius ** 2 xyz_to_spherical_cos_phi(rx, ry, rz) return rx, ry, rz def xyz2sphericalR(xyz, offset, R): """ Calculate the spherical coordinates from indices """ rx = xyz[:, 0] - offset[0] idx = indices_fabs_le(rx, R) ry = xyz[idx, 1] - offset[1] ix = indices_fabs_le(ry, R) ry = ry[ix] idx = idx[ix] rz = xyz[idx, 2] - offset[2] ix = indices_fabs_le(rz, R) ry = ry[ix] rz = rz[ix] idx = idx[ix] if len(idx) == 0: return [], [], [], [] rx = rx[idx] # Calculate radius ** 2 ix = indices_le(rx**2 + ry**2 + rz**2, R**2) idx = idx[ix] if len(idx) == 0: return [], [], [], [] rx = rx[ix] ry = ry[ix] rz = rz[ix] xyz_to_spherical_cos_phi(rx, ry, rz) return idx, rx, ry, rz # Looping atoms in the sparse pattern is better since we can pre-calculate # the radial parts and then add them. # First create a SparseOrbital matrix, then convert to SparseAtom spO = SparseOrbital(geometry, dtype=np.int16) spO._csr = SparseCSR(csrDM) spA = spO.toSparseAtom(dtype=np.int16) del spO na = geometry.na # Remove the diagonal part of the sparse atom matrix off = na * primary_i_s for ia in range(na): del spA[ia, off + ia] # Get pointers and delete the atomic sparse pattern # The below complexity is because we are not finalizing spA csr = spA._csr a_ptr = _ncol_to_indptr(csr.ncol) a_col = csr.col[_a.array_arange(csr.ptr, n=csr.ncol)] del spA, csr # Get offset in supercell in orbitals off = geometry.no * primary_i_s origin = grid.origin # TODO sum the non-origin atoms to the csrDM matrix # this would further decrease the loops required. # Loop over all atoms in the grid-cell for ia, ia_xyz, isc in zip(IA, XYZ, ISC): # Get current atom ia_atom = atoms[ia] IO = a2o(ia) IO_range = range(ia_atom.no) cell_offset = (cell * isc.reshape(3, 1)).sum(0) - origin # Extract maximum R R = ia_atom.maxR() if R <= 0.: warn( f"Atom '{ia_atom}' does not have a wave-function, skipping atom." ) eta.update() continue # Retrieve indices of the grid for the atomic shape idx = grid.index(ia_atom.toSphere(ia_xyz)) # Now we have the indices for the largest orbital on the atom # Subsequently we have to loop the orbitals and the # connecting orbitals # Then we find the indices that overlap with these indices # First reduce indices to inside the grid-cell idx[idx[:, 0] < 0, 0] = 0 idx[shape[0] <= idx[:, 0], 0] = shape[0] - 1 idx[idx[:, 1] < 0, 1] = 0 idx[shape[1] <= idx[:, 1], 1] = shape[1] - 1 idx[idx[:, 2] < 0, 2] = 0 idx[shape[2] <= idx[:, 2], 2] = shape[2] - 1 # Remove duplicates, requires numpy >= 1.13 idx = unique(idx, axis=0) if len(idx) == 0: eta.update() continue # Get real-space coordinates for the current atom # as well as the radial parts grid_xyz = dot(idx, dcell) # Perform loop on connection atoms # Allocate the DM_pj arrays # This will have a size equal to number of elements times number of # orbitals on this atom # In this way we do not have to calculate the psi_j multiple times DM_io = csrDM[IO:IO + ia_atom.no, :].tolil() DM_pj = _a.zerosd([ia_atom.no, grid_xyz.shape[0]]) # Now we perform the loop on the connections for this atom # Remark that we have removed the diagonal atom (it-self) # As that will be calculated in the end for ja in a_col[a_ptr[ia]:a_ptr[ia + 1]]: # Retrieve atom (which contains the orbitals) ja_atom = atoms[ja % na] JO = a2o(ja) jR = ja_atom.maxR() # Get actual coordinate of the atom ja_xyz = axyz(ja) + cell_offset # Reduce the ia'th grid points to those that connects to the ja'th atom ja_idx, ja_r, ja_theta, ja_cos_phi = xyz2sphericalR( grid_xyz, ja_xyz, jR) if len(ja_idx) == 0: # Quick step continue # Loop on orbitals on this atom for jo in range(ja_atom.no): o = ja_atom.orbitals[jo] oR = o.R # Downsize to the correct indices if jR - oR < 1e-6: ja_idx1 = ja_idx ja_r1 = ja_r ja_theta1 = ja_theta ja_cos_phi1 = ja_cos_phi else: ja_idx1 = indices_le(ja_r, oR) if len(ja_idx1) == 0: # Quick step continue # Reduce arrays ja_r1 = ja_r[ja_idx1] ja_theta1 = ja_theta[ja_idx1] ja_cos_phi1 = ja_cos_phi[ja_idx1] ja_idx1 = ja_idx[ja_idx1] # Calculate the psi_j component psi = o.psi_spher(ja_r1, ja_theta1, ja_cos_phi1, cos_phi=True) # Now add this orbital to all components for io in IO_range: DM_pj[io, ja_idx1] += DM_io[io, JO + jo] * psi # Temporary clean up del ja_idx, ja_r, ja_theta, ja_cos_phi del ja_idx1, ja_r1, ja_theta1, ja_cos_phi1, psi # Now we have all components for all orbitals connection to all orbitals on atom # ia. We simply need to add the diagonal components # Loop on the orbitals on this atom ia_r, ia_theta, ia_cos_phi = xyz2spherical(grid_xyz, ia_xyz) del grid_xyz for io in IO_range: # Only loop halve the range. # This is because: triu + tril(-1).transpose() # removes the lower half of the on-site matrix. for jo in range(io + 1, ia_atom.no): DM = DM_io[io, off + IO + jo] oj = ia_atom.orbitals[jo] ojR = oj.R # Downsize to the correct indices if R - ojR < 1e-6: ja_idx1 = slice(None) ja_r1 = ia_r ja_theta1 = ia_theta ja_cos_phi1 = ia_cos_phi else: ja_idx1 = indices_le(ia_r, ojR) if len(ja_idx1) == 0: # Quick step continue # Reduce arrays ja_r1 = ia_r[ja_idx1] ja_theta1 = ia_theta[ja_idx1] ja_cos_phi1 = ia_cos_phi[ja_idx1] # Calculate the psi_j component DM_pj[io, ja_idx1] += DM * oj.psi_spher( ja_r1, ja_theta1, ja_cos_phi1, cos_phi=True) # Calculate the psi_i component # Note that this one *also* zeroes points outside the shell # I.e. this step is important because it "nullifies" all but points where # orbital io is defined. psi = ia_atom.orbitals[io].psi_spher(ia_r, ia_theta, ia_cos_phi, cos_phi=True) DM_pj[io, :] += DM_io[io, off + IO + io] * psi DM_pj[io, :] *= psi # Temporary clean up ja_idx1 = ja_r1 = ja_theta1 = ja_cos_phi1 = None del ia_r, ia_theta, ia_cos_phi, psi, DM_io # Now add the density grid.grid[idx[:, 0], idx[:, 1], idx[:, 2]] += DM_pj.sum(0) # Clean-up del DM_pj, idx eta.update() eta.close() # Reset the error code for division np.seterr(**old_err)
def _read_class(self, cls, **kwargs): """ Reads a class model from a file """ # Ensure that the geometry is written geom = self.read_geometry() # Determine the type of delta we are storing... E = kwargs.get('E', None) ilvl, ik, iE = self._get_lvl_k_E(**kwargs) # Get the level lvl = self._get_lvl(ilvl) if iE < 0 and ilvl in [3, 4]: raise ValueError(f"Energy {E} eV does not exist in the file.") if ik < 0 and ilvl in [2, 4]: raise ValueError("k-point requested does not exist in the file.") if ilvl == 1: sl = [slice(None)] * 2 elif ilvl == 2: sl = [slice(None)] * 3 sl[0] = ik elif ilvl == 3: sl = [slice(None)] * 3 sl[0] = iE elif ilvl == 4: sl = [slice(None)] * 4 sl[0] = ik sl[1] = iE # Now figure out what data-type the delta is. if 'Redelta' in lvl.variables: # It *must* be a complex valued Hamiltonian is_complex = True dtype = np.complex128 elif 'delta' in lvl.variables: is_complex = False dtype = np.float64 # Get number of spins nspin = len(self.dimensions['spin']) # Now create the sparse matrix stuff (we re-create the # array, hence just allocate the smallest amount possible) C = cls(geom, nspin, nnzpr=1, dtype=dtype, orthogonal=True) C._csr.ncol = _a.arrayi(lvl.variables['n_col'][:]) # Update maximum number of connections (in case future stuff happens) C._csr.ptr = _ncol_to_indptr(C._csr.ncol) C._csr.col = _a.arrayi(lvl.variables['list_col'][:]) - 1 # Copy information over C._csr._nnz = len(C._csr.col) C._csr._D = np.empty([C._csr.ptr[-1], nspin], dtype) if is_complex: for ispin in range(nspin): sl[-2] = ispin C._csr._D[:, ispin].real = lvl.variables['Redelta'][sl] * Ry2eV C._csr._D[:, ispin].imag = lvl.variables['Imdelta'][sl] * Ry2eV else: for ispin in range(nspin): sl[-2] = ispin C._csr._D[:, ispin] = lvl.variables['delta'][sl] * Ry2eV # Convert from isc to sisl isc _csr_from_sc_off(C.geometry, lvl.variables['isc_off'][:, :], C._csr) _mat_spin_convert(C) return C